|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2017 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/tiny_solver_cost_function_adapter.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <memory> | 
|  |  | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | class CostFunction2x3 : public SizedCostFunction<2,3> { | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const final { | 
|  | double x = parameters[0][0]; | 
|  | double y = parameters[0][1]; | 
|  | double z = parameters[0][2]; | 
|  |  | 
|  | residuals[0] = x + 2*y + 4*z; | 
|  | residuals[1] = y * z; | 
|  |  | 
|  | if (jacobians && jacobians[0]) { | 
|  | jacobians[0][0] = 1; | 
|  | jacobians[0][1] = 2; | 
|  | jacobians[0][2] = 4; | 
|  |  | 
|  | jacobians[0][3 + 0] = 0; | 
|  | jacobians[0][3 + 1] = z; | 
|  | jacobians[0][3 + 2] = y; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<int kNumResiduals, int kNumParameters> | 
|  | void TestHelper() { | 
|  | std::unique_ptr<CostFunction> cost_function(new CostFunction2x3); | 
|  | typedef  TinySolverCostFunctionAdapter<kNumResiduals, kNumParameters> CostFunctionAdapter; | 
|  | CostFunctionAdapter cfa(*cost_function); | 
|  | EXPECT_EQ(CostFunctionAdapter::NUM_RESIDUALS, kNumResiduals); | 
|  | EXPECT_EQ(CostFunctionAdapter::NUM_PARAMETERS, kNumParameters); | 
|  |  | 
|  | EXPECT_EQ(cfa.NumResiduals(), 2); | 
|  | EXPECT_EQ(cfa.NumParameters(), 3); | 
|  |  | 
|  | Eigen::Matrix<double, 2, 1> actual_residuals, expected_residuals; | 
|  | Eigen::Matrix<double, 2, 3, Eigen::ColMajor> actual_jacobian; | 
|  | Eigen::Matrix<double, 2, 3, Eigen::RowMajor> expected_jacobian; | 
|  |  | 
|  | double xyz[3] = { 1.0, -1.0, 2.0}; | 
|  | double* parameters[1] = {xyz}; | 
|  |  | 
|  | // Check that residual only evaluation works. | 
|  | cost_function->Evaluate(parameters, expected_residuals.data(), NULL); | 
|  | cfa(xyz, actual_residuals.data(), NULL); | 
|  | EXPECT_NEAR( | 
|  | (expected_residuals - actual_residuals).norm() / actual_residuals.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\nExpected residuals: " << expected_residuals.transpose() | 
|  | << "\nActual residuals: " << actual_residuals.transpose(); | 
|  |  | 
|  | // Check that residual and jacobian evaluation works. | 
|  | double* jacobians[1] = {expected_jacobian.data()}; | 
|  | cost_function->Evaluate(parameters, expected_residuals.data(), jacobians); | 
|  | cfa(xyz, actual_residuals.data(), actual_jacobian.data()); | 
|  |  | 
|  | EXPECT_NEAR( | 
|  | (expected_residuals - actual_residuals).norm() / actual_residuals.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\nExpected residuals: " << expected_residuals.transpose() | 
|  | << "\nActual residuals: " << actual_residuals.transpose(); | 
|  |  | 
|  | EXPECT_NEAR( | 
|  | (expected_jacobian - actual_jacobian).norm() / actual_jacobian.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\nExpected jacobian: " << expected_jacobian.transpose() | 
|  | << "\nActual jacobian: " << actual_jacobian.transpose(); | 
|  | } | 
|  |  | 
|  | TEST(TinySolverCostFunctionAdapter, StaticResidualsStaticParameterBlock) { | 
|  | TestHelper<2, 3>(); | 
|  | } | 
|  |  | 
|  | TEST(TinySolverCostFunctionAdapter, DynamicResidualsStaticParameterBlock) { | 
|  | TestHelper<Eigen::Dynamic, 3>(); | 
|  | } | 
|  |  | 
|  | TEST(TinySolverCostFunctionAdapter, StaticResidualsDynamicParameterBlock) { | 
|  | TestHelper<2, Eigen::Dynamic>(); | 
|  | } | 
|  |  | 
|  | TEST(TinySolverCostFunctionAdapter, DynamicResidualsDynamicParameterBlock) { | 
|  | TestHelper<Eigen::Dynamic, Eigen::Dynamic>(); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres |