| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: mierle@gmail.com (Keir Mierle) | 
 |  | 
 | #include "ceres/evaluation_callback.h" | 
 |  | 
 | #include <cmath> | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/autodiff_cost_function.h" | 
 | #include "ceres/problem.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/sized_cost_function.h" | 
 | #include "ceres/solver.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | // Use an inline hash function to avoid portability wrangling. Algorithm from | 
 | // Daniel Bernstein, known as the "djb2" hash. | 
 | template <typename T> | 
 | uint64_t Djb2Hash(const T* data, const int size) { | 
 |   uint64_t hash = 5381; | 
 |   const auto* data_as_bytes = reinterpret_cast<const uint8_t*>(data); | 
 |   for (int i = 0; i < sizeof(*data) * size; ++i) { | 
 |     hash = hash * 33 + data_as_bytes[i]; | 
 |   } | 
 |   return hash; | 
 | } | 
 |  | 
 | const double kUninitialized = 0; | 
 |  | 
 | // Generally multiple inheritance is a terrible idea, but in this (test) | 
 | // case it makes for a relatively elegant test implementation. | 
 | struct WigglyBowlCostFunctionAndEvaluationCallback : SizedCostFunction<2, 2>, | 
 |                                                      EvaluationCallback { | 
 |   explicit WigglyBowlCostFunctionAndEvaluationCallback(double* parameter) | 
 |       : EvaluationCallback(), | 
 |         user_parameter_block(parameter), | 
 |         prepare_num_calls(0), | 
 |         prepare_requested_jacobians(false), | 
 |         prepare_new_evaluation_point(false), | 
 |         prepare_parameter_hash(kUninitialized), | 
 |         evaluate_num_calls(0), | 
 |         evaluate_last_parameter_hash(kUninitialized) {} | 
 |  | 
 |   // Evaluation callback interface. This checks that all the preconditions are | 
 |   // met at the point that Ceres calls into it. | 
 |   void PrepareForEvaluation(bool evaluate_jacobians, | 
 |                             bool new_evaluation_point) final { | 
 |     // At this point, the incoming parameters are implicitly pushed by Ceres | 
 |     // into the user parameter blocks; in contrast to in Evaluate(). | 
 |     uint64_t incoming_parameter_hash = Djb2Hash(user_parameter_block, 2); | 
 |  | 
 |     // Check: Prepare() & Evaluate() come in pairs, in that order. Before this | 
 |     // call, the number of calls excluding this one should match. | 
 |     EXPECT_EQ(prepare_num_calls, evaluate_num_calls); | 
 |  | 
 |     // Check: new_evaluation_point indicates that the parameter has changed. | 
 |     if (new_evaluation_point) { | 
 |       // If it's a new evaluation point, then the parameter should have | 
 |       // changed. Technically, it's not required that it must change but | 
 |       // in practice it does, and that helps with testing. | 
 |       EXPECT_NE(evaluate_last_parameter_hash, incoming_parameter_hash); | 
 |       EXPECT_NE(prepare_parameter_hash, incoming_parameter_hash); | 
 |     } else { | 
 |       // If this is the same evaluation point as last time, ensure that | 
 |       // the parameters match both from the previous evaluate, the | 
 |       // previous prepare, and the current prepare. | 
 |       EXPECT_EQ(evaluate_last_parameter_hash, prepare_parameter_hash); | 
 |       EXPECT_EQ(evaluate_last_parameter_hash, incoming_parameter_hash); | 
 |     } | 
 |  | 
 |     // Save details for to check at the next call to Evaluate(). | 
 |     prepare_num_calls++; | 
 |     prepare_requested_jacobians = evaluate_jacobians; | 
 |     prepare_new_evaluation_point = new_evaluation_point; | 
 |     prepare_parameter_hash = incoming_parameter_hash; | 
 |   } | 
 |  | 
 |   // Cost function interface. This checks that preconditions that were | 
 |   // set as part of the PrepareForEvaluation() call are met in this one. | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const final { | 
 |     // Cost function implementation of the "Wiggly Bowl" function: | 
 |     // | 
 |     //   1/2 * [(y - a*sin(x))^2 + x^2], | 
 |     // | 
 |     // expressed as a Ceres cost function with two residuals: | 
 |     // | 
 |     //   r[0] = y - a*sin(x) | 
 |     //   r[1] = x. | 
 |     // | 
 |     // This is harder to optimize than the Rosenbrock function because the | 
 |     // minimizer has to navigate a sine-shaped valley while descending the 1D | 
 |     // parabola formed along the y axis. Note that the "a" needs to be more | 
 |     // than 5 to get a strong enough wiggle effect in the cost surface to | 
 |     // trigger failed iterations in the optimizer. | 
 |     const double a = 10.0; | 
 |     double x = (*parameters)[0]; | 
 |     double y = (*parameters)[1]; | 
 |     residuals[0] = y - a * sin(x); | 
 |     residuals[1] = x; | 
 |     if (jacobians != nullptr) { | 
 |       (*jacobians)[2 * 0 + 0] = -a * cos(x);  // df1/dx | 
 |       (*jacobians)[2 * 0 + 1] = 1.0;          // df1/dy | 
 |       (*jacobians)[2 * 1 + 0] = 1.0;          // df2/dx | 
 |       (*jacobians)[2 * 1 + 1] = 0.0;          // df2/dy | 
 |     } | 
 |  | 
 |     uint64_t incoming_parameter_hash = Djb2Hash(*parameters, 2); | 
 |  | 
 |     // Check: PrepareForEvaluation() & Evaluate() come in pairs, in that order. | 
 |     EXPECT_EQ(prepare_num_calls, evaluate_num_calls + 1); | 
 |  | 
 |     // Check: if new_evaluation_point indicates that the parameter has | 
 |     // changed, it has changed; otherwise it is the same. | 
 |     if (prepare_new_evaluation_point) { | 
 |       EXPECT_NE(evaluate_last_parameter_hash, incoming_parameter_hash); | 
 |     } else { | 
 |       EXPECT_NE(evaluate_last_parameter_hash, kUninitialized); | 
 |       EXPECT_EQ(evaluate_last_parameter_hash, incoming_parameter_hash); | 
 |     } | 
 |  | 
 |     // Check: Parameter matches value in parameter blocks during prepare. | 
 |     EXPECT_EQ(prepare_parameter_hash, incoming_parameter_hash); | 
 |  | 
 |     // Check: jacobians are requested if they were in PrepareForEvaluation(). | 
 |     EXPECT_EQ(prepare_requested_jacobians, jacobians != nullptr); | 
 |  | 
 |     evaluate_num_calls++; | 
 |     evaluate_last_parameter_hash = incoming_parameter_hash; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Pointer to the parameter block associated with this cost function. | 
 |   // Contents should get set by Ceres before calls to PrepareForEvaluation() | 
 |   // and Evaluate(). | 
 |   double* user_parameter_block; | 
 |  | 
 |   // Track state: PrepareForEvaluation(). | 
 |   // | 
 |   // These track details from the PrepareForEvaluation() call (hence the | 
 |   // "prepare_" prefix), which are checked for consistency in Evaluate(). | 
 |   int prepare_num_calls; | 
 |   bool prepare_requested_jacobians; | 
 |   bool prepare_new_evaluation_point; | 
 |   uint64_t prepare_parameter_hash; | 
 |  | 
 |   // Track state: Evaluate(). | 
 |   // | 
 |   // These track details from the Evaluate() call (hence the "evaluate_" | 
 |   // prefix), which are then checked for consistency in the calls to | 
 |   // PrepareForEvaluation(). Mutable is reasonable for this case. | 
 |   mutable int evaluate_num_calls; | 
 |   mutable uint64_t evaluate_last_parameter_hash; | 
 | }; | 
 |  | 
 | TEST(EvaluationCallback, WithTrustRegionMinimizer) { | 
 |   double parameters[2] = {50.0, 50.0}; | 
 |   const uint64_t original_parameters_hash = Djb2Hash(parameters, 2); | 
 |  | 
 |   WigglyBowlCostFunctionAndEvaluationCallback cost_function(parameters); | 
 |   Problem::Options problem_options; | 
 |   problem_options.evaluation_callback = &cost_function; | 
 |   problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
 |   Problem problem(problem_options); | 
 |   problem.AddResidualBlock(&cost_function, nullptr, parameters); | 
 |  | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |   options.max_num_iterations = 50; | 
 |  | 
 |   // Run the solve. Checking is done inside the cost function / callback. | 
 |   Solver::Summary summary; | 
 |   Solve(options, &problem, &summary); | 
 |  | 
 |   // Ensure that this was a hard cost function (not all steps succeed). | 
 |   EXPECT_GT(summary.num_successful_steps, 10); | 
 |   EXPECT_GT(summary.num_unsuccessful_steps, 10); | 
 |  | 
 |   // Ensure PrepareForEvaluation() is called the appropriate number of times. | 
 |   EXPECT_EQ( | 
 |       cost_function.prepare_num_calls, | 
 |       // Unsuccessful steps are evaluated only once (no jacobians). | 
 |       summary.num_unsuccessful_steps + | 
 |           // Successful steps are evaluated twice: with and without jacobians. | 
 |           2 * summary.num_successful_steps | 
 |           // Final iteration doesn't re-evaluate the jacobian. | 
 |           // Note: This may be sensitive to tweaks to the TR algorithm; if | 
 |           // this becomes too brittle, remove this EXPECT_EQ() entirely. | 
 |           - 1); | 
 |  | 
 |   // Ensure the callback calls ran a reasonable number of times. | 
 |   EXPECT_GT(cost_function.prepare_num_calls, 0); | 
 |   EXPECT_GT(cost_function.evaluate_num_calls, 0); | 
 |   EXPECT_EQ(cost_function.prepare_num_calls, cost_function.evaluate_num_calls); | 
 |  | 
 |   // Ensure that the parameters did actually change. | 
 |   EXPECT_NE(Djb2Hash(parameters, 2), original_parameters_hash); | 
 | } | 
 |  | 
 | // r = 1 - x | 
 | struct LinearResidual { | 
 |   template <typename T> | 
 |   bool operator()(const T* x, T* residuals) const { | 
 |     residuals[0] = 1.0 - x[0]; | 
 |     return true; | 
 |   } | 
 |  | 
 |   static CostFunction* Create() { | 
 |     return new AutoDiffCostFunction<LinearResidual, 1, 1>(new LinearResidual); | 
 |   }; | 
 | }; | 
 |  | 
 | // Increments a counter everytime PrepareForEvaluation is called. | 
 | class IncrementingEvaluationCallback : public EvaluationCallback { | 
 |  public: | 
 |   void PrepareForEvaluation(bool evaluate_jacobians, | 
 |                             bool new_evaluation_point) final { | 
 |     (void)evaluate_jacobians; | 
 |     (void)new_evaluation_point; | 
 |     counter_ += 1.0; | 
 |   } | 
 |  | 
 |   double counter() const { return counter_; } | 
 |  | 
 |  private: | 
 |   double counter_ = -1; | 
 | }; | 
 |  | 
 | // r = IncrementingEvaluationCallback::counter - x | 
 | struct EvaluationCallbackResidual { | 
 |   explicit EvaluationCallbackResidual( | 
 |       const IncrementingEvaluationCallback& callback) | 
 |       : callback(callback) {} | 
 |  | 
 |   template <typename T> | 
 |   bool operator()(const T* x, T* residuals) const { | 
 |     residuals[0] = callback.counter() - x[0]; | 
 |     return true; | 
 |   } | 
 |  | 
 |   const IncrementingEvaluationCallback& callback; | 
 |  | 
 |   static CostFunction* Create(IncrementingEvaluationCallback& callback) { | 
 |     return new AutoDiffCostFunction<EvaluationCallbackResidual, 1, 1>( | 
 |         new EvaluationCallbackResidual(callback)); | 
 |   }; | 
 | }; | 
 |  | 
 | // The following test, constructs a problem with residual blocks all | 
 | // of whose parameters are constant, so they are evaluated once | 
 | // outside the Minimizer to compute Solver::Summary::fixed_cost. | 
 | // | 
 | // The cost function for this residual block depends on the | 
 | // IncrementingEvaluationCallback::counter_, by checking the value of | 
 | // the fixed cost, we can check if the IncrementingEvaluationCallback | 
 | // was called. | 
 | TEST(EvaluationCallback, EvaluationCallbackIsCalledBeforeFixedCostIsEvaluated) { | 
 |   double x = 1; | 
 |   double y = 2; | 
 |   std::unique_ptr<IncrementingEvaluationCallback> callback( | 
 |       new IncrementingEvaluationCallback); | 
 |   Problem::Options problem_options; | 
 |   problem_options.evaluation_callback = callback.get(); | 
 |   Problem problem(problem_options); | 
 |   problem.AddResidualBlock(LinearResidual::Create(), nullptr, &x); | 
 |   problem.AddResidualBlock( | 
 |       EvaluationCallbackResidual::Create(*callback), nullptr, &y); | 
 |   problem.SetParameterBlockConstant(&y); | 
 |  | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |   Solver::Summary summary; | 
 |   Solve(options, &problem, &summary); | 
 |   EXPECT_EQ(summary.fixed_cost, 2.0); | 
 |   EXPECT_EQ(summary.final_cost, summary.fixed_cost); | 
 |   EXPECT_GT(callback->counter(), 0); | 
 | } | 
 |  | 
 | static void WithLineSearchMinimizerImpl( | 
 |     LineSearchType line_search, | 
 |     LineSearchDirectionType line_search_direction, | 
 |     LineSearchInterpolationType line_search_interpolation) { | 
 |   double parameters[2] = {50.0, 50.0}; | 
 |   const uint64_t original_parameters_hash = Djb2Hash(parameters, 2); | 
 |  | 
 |   WigglyBowlCostFunctionAndEvaluationCallback cost_function(parameters); | 
 |   Problem::Options problem_options; | 
 |   problem_options.evaluation_callback = &cost_function; | 
 |   problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
 |   Problem problem(problem_options); | 
 |   problem.AddResidualBlock(&cost_function, nullptr, parameters); | 
 |  | 
 |   Solver::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |   options.max_num_iterations = 50; | 
 |   options.minimizer_type = ceres::LINE_SEARCH; | 
 |  | 
 |   options.line_search_type = line_search; | 
 |   options.line_search_direction_type = line_search_direction; | 
 |   options.line_search_interpolation_type = line_search_interpolation; | 
 |  | 
 |   // Run the solve. Checking is done inside the cost function / callback. | 
 |   Solver::Summary summary; | 
 |   Solve(options, &problem, &summary); | 
 |  | 
 |   // Ensure the callback calls ran a reasonable number of times. | 
 |   EXPECT_GT(summary.num_line_search_steps, 10); | 
 |   EXPECT_GT(cost_function.prepare_num_calls, 30); | 
 |   EXPECT_EQ(cost_function.prepare_num_calls, cost_function.evaluate_num_calls); | 
 |  | 
 |   // Ensure that the parameters did actually change. | 
 |   EXPECT_NE(Djb2Hash(parameters, 2), original_parameters_hash); | 
 | } | 
 |  | 
 | // Note: These tests omit combinations of Wolfe line search with bisection. | 
 | // Due to an implementation quirk in Wolfe line search with bisection, there | 
 | // are calls to re-evaluate an existing point with new_point = true. That | 
 | // causes the (overly) strict tests to break, since they check the new_point | 
 | // preconditions in an if-and-only-if way. Strictly speaking, if new_point = | 
 | // true, the interface does not *require* that the point has changed; only that | 
 | // if new_point = false, the same point is reused. | 
 | // | 
 | // Since the strict checking is useful to verify that there aren't missed | 
 | // optimizations, omit tests of the Wolfe with bisection cases. | 
 |  | 
 | // Wolfe with L-BFGS. | 
 | TEST(EvaluationCallback, WithLineSearchMinimizerWolfeLbfgsCubic) { | 
 |   WithLineSearchMinimizerImpl(WOLFE, LBFGS, CUBIC); | 
 | } | 
 | TEST(EvaluationCallback, WithLineSearchMinimizerWolfeLbfgsQuadratic) { | 
 |   WithLineSearchMinimizerImpl(WOLFE, LBFGS, QUADRATIC); | 
 | } | 
 |  | 
 | // Wolfe with full BFGS. | 
 | TEST(EvaluationCallback, WithLineSearchMinimizerWolfeBfgsCubic) { | 
 |   WithLineSearchMinimizerImpl(WOLFE, BFGS, CUBIC); | 
 | } | 
 |  | 
 | TEST(EvaluationCallback, WithLineSearchMinimizerWolfeBfgsQuadratic) { | 
 |   WithLineSearchMinimizerImpl(WOLFE, BFGS, QUADRATIC); | 
 | } | 
 |  | 
 | // Armijo with nonlinear conjugate gradient. | 
 | TEST(EvaluationCallback, WithLineSearchMinimizerArmijoCubic) { | 
 |   WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, CUBIC); | 
 | } | 
 |  | 
 | TEST(EvaluationCallback, WithLineSearchMinimizerArmijoBisection) { | 
 |   WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, BISECTION); | 
 | } | 
 |  | 
 | TEST(EvaluationCallback, WithLineSearchMinimizerArmijoQuadratic) { | 
 |   WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, QUADRATIC); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |