|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | //         sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/solver.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <sstream>  // NOLINT | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/log/check.h" | 
|  | #include "absl/log/log.h" | 
|  | #include "absl/strings/str_cat.h" | 
|  | #include "absl/strings/str_format.h" | 
|  | #include "absl/time/clock.h" | 
|  | #include "absl/time/time.h" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/context.h" | 
|  | #include "ceres/context_impl.h" | 
|  | #include "ceres/cuda_sparse_cholesky.h" | 
|  | #include "ceres/detect_structure.h" | 
|  | #include "ceres/eigensparse.h" | 
|  | #include "ceres/gradient_checking_cost_function.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/parameter_block_ordering.h" | 
|  | #include "ceres/preprocessor.h" | 
|  | #include "ceres/problem.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/schur_templates.h" | 
|  | #include "ceres/solver_utils.h" | 
|  | #include "ceres/suitesparse.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace { | 
|  |  | 
|  | #define OPTION_OP(x, y, OP)                                               \ | 
|  | if (!(options.x OP y)) {                                                \ | 
|  | std::stringstream ss;                                                 \ | 
|  | ss << "Invalid configuration. ";                                      \ | 
|  | ss << std::string("Solver::Options::" #x " = ") << options.x << ". "; \ | 
|  | ss << "Violated constraint: ";                                        \ | 
|  | ss << std::string("Solver::Options::" #x " " #OP " " #y);             \ | 
|  | *error = ss.str();                                                    \ | 
|  | return false;                                                         \ | 
|  | } | 
|  |  | 
|  | #define OPTION_OP_OPTION(x, y, OP)                                        \ | 
|  | if (!(options.x OP options.y)) {                                        \ | 
|  | std::stringstream ss;                                                 \ | 
|  | ss << "Invalid configuration. ";                                      \ | 
|  | ss << std::string("Solver::Options::" #x " = ") << options.x << ". "; \ | 
|  | ss << std::string("Solver::Options::" #y " = ") << options.y << ". "; \ | 
|  | ss << "Violated constraint: ";                                        \ | 
|  | ss << std::string("Solver::Options::" #x);                            \ | 
|  | ss << std::string(#OP " Solver::Options::" #y ".");                   \ | 
|  | *error = ss.str();                                                    \ | 
|  | return false;                                                         \ | 
|  | } | 
|  |  | 
|  | #define OPTION_GE(x, y) OPTION_OP(x, y, >=); | 
|  | #define OPTION_GT(x, y) OPTION_OP(x, y, >); | 
|  | #define OPTION_LE(x, y) OPTION_OP(x, y, <=); | 
|  | #define OPTION_LT(x, y) OPTION_OP(x, y, <); | 
|  | #define OPTION_LE_OPTION(x, y) OPTION_OP_OPTION(x, y, <=) | 
|  | #define OPTION_LT_OPTION(x, y) OPTION_OP_OPTION(x, y, <) | 
|  |  | 
|  | bool CommonOptionsAreValid(const Solver::Options& options, std::string* error) { | 
|  | OPTION_GE(max_num_iterations, 0); | 
|  | OPTION_GE(max_solver_time_in_seconds, 0.0); | 
|  | OPTION_GE(function_tolerance, 0.0); | 
|  | OPTION_GE(gradient_tolerance, 0.0); | 
|  | OPTION_GE(parameter_tolerance, 0.0); | 
|  | OPTION_GT(num_threads, 0); | 
|  | if (options.check_gradients) { | 
|  | OPTION_GT(gradient_check_relative_precision, 0.0); | 
|  | OPTION_GT(gradient_check_numeric_derivative_relative_step_size, 0.0); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool IsNestedDissectionAvailable(SparseLinearAlgebraLibraryType type) { | 
|  | return (((type == SUITE_SPARSE) && | 
|  | internal::SuiteSparse::IsNestedDissectionAvailable()) || | 
|  | (type == ACCELERATE_SPARSE) || | 
|  | ((type == EIGEN_SPARSE) && | 
|  | internal::EigenSparse::IsNestedDissectionAvailable()) | 
|  | #ifndef CERES_NO_CUDSS | 
|  | || ((type == CUDA_SPARSE) && | 
|  | internal::CudaSparseCholesky<>::IsNestedDissectionAvailable()) | 
|  | #endif | 
|  | ); | 
|  | } | 
|  |  | 
|  | bool IsIterativeSolver(LinearSolverType type) { | 
|  | return (type == CGNR || type == ITERATIVE_SCHUR); | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForDenseSolver(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | const char* library_name = DenseLinearAlgebraLibraryTypeToString( | 
|  | options.dense_linear_algebra_library_type); | 
|  | const char* solver_name = | 
|  | LinearSolverTypeToString(options.linear_solver_type); | 
|  | constexpr char kFormat[] = | 
|  | "Can't use %s with dense_linear_algebra_library_type = %s " | 
|  | "because support not enabled when Ceres was built."; | 
|  |  | 
|  | if (!IsDenseLinearAlgebraLibraryTypeAvailable( | 
|  | options.dense_linear_algebra_library_type)) { | 
|  | *error = absl::StrFormat(kFormat, solver_name, library_name); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForSparseCholeskyBasedSolver(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | const char* library_name = SparseLinearAlgebraLibraryTypeToString( | 
|  | options.sparse_linear_algebra_library_type); | 
|  | // Sparse factorization based solvers and some preconditioners require a | 
|  | // sparse Cholesky factorization. | 
|  | const char* solver_name = | 
|  | IsIterativeSolver(options.linear_solver_type) | 
|  | ? PreconditionerTypeToString(options.preconditioner_type) | 
|  | : LinearSolverTypeToString(options.linear_solver_type); | 
|  |  | 
|  | constexpr char kNoSparseFormat[] = | 
|  | "Can't use %s with sparse_linear_algebra_library_type = %s."; | 
|  | constexpr char kNoLibraryFormat[] = | 
|  | "Can't use %s sparse_linear_algebra_library_type = %s, because support " | 
|  | "was not enabled when Ceres Solver was built."; | 
|  | constexpr char kNoNesdisFormat[] = | 
|  | "NESDIS is not available with sparse_linear_algebra_library_type = %s."; | 
|  | constexpr char kDynamicSparsityFormat[] = | 
|  | "dynamic sparsity is not supported with " | 
|  | "sparse_linear_algebra_library_type = %s"; | 
|  |  | 
|  | if (options.sparse_linear_algebra_library_type == NO_SPARSE) { | 
|  | *error = absl::StrFormat(kNoSparseFormat, solver_name, library_name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (IsSparseLinearAlgebraLibraryTypeAvailable( | 
|  | options.sparse_linear_algebra_library_type)) { | 
|  | if (options.sparse_linear_algebra_library_type == CUDA_SPARSE) { | 
|  | #if defined(CERES_NO_CUDSS) | 
|  | *error = absl::StrFormat(kNoLibraryFormat, solver_name, library_name); | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  | } else { | 
|  | *error = absl::StrFormat(kNoLibraryFormat, solver_name, library_name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.linear_solver_ordering_type == ceres::NESDIS && | 
|  | !IsNestedDissectionAvailable( | 
|  | options.sparse_linear_algebra_library_type)) { | 
|  | *error = absl::StrFormat(kNoNesdisFormat, library_name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CERES_NO_CHOLMOD_FLOAT | 
|  | if (options.use_mixed_precision_solves && | 
|  | options.sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
|  | *error = | 
|  | "This version of SuiteSparse does not support single precision " | 
|  | "Cholesky factorization. So use_mixed_precision_solves is not " | 
|  | "supported with SUITE_SPARSE"; | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (options.dynamic_sparsity && | 
|  | options.sparse_linear_algebra_library_type == ACCELERATE_SPARSE) { | 
|  | *error = absl::StrFormat(kDynamicSparsityFormat, library_name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForDenseNormalCholesky(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | CHECK_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY); | 
|  | return OptionsAreValidForDenseSolver(options, error); | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForDenseQr(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | CHECK_EQ(options.linear_solver_type, DENSE_QR); | 
|  |  | 
|  | if (!OptionsAreValidForDenseSolver(options, error)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.use_mixed_precision_solves) { | 
|  | *error = "Can't use use_mixed_precision_solves with DENSE_QR."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForSparseNormalCholesky(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | CHECK_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
|  | return OptionsAreValidForSparseCholeskyBasedSolver(options, error); | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForDenseSchur(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | CHECK_EQ(options.linear_solver_type, DENSE_SCHUR); | 
|  |  | 
|  | if (options.dynamic_sparsity) { | 
|  | *error = "dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!OptionsAreValidForDenseSolver(options, error)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForSparseSchur(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | CHECK_EQ(options.linear_solver_type, SPARSE_SCHUR); | 
|  | if (options.dynamic_sparsity) { | 
|  | *error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY."; | 
|  | return false; | 
|  | } | 
|  | return OptionsAreValidForSparseCholeskyBasedSolver(options, error); | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForIterativeSchur(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | CHECK_EQ(options.linear_solver_type, ITERATIVE_SCHUR); | 
|  | if (options.dynamic_sparsity) { | 
|  | *error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.use_explicit_schur_complement) { | 
|  | if (options.preconditioner_type != SCHUR_JACOBI) { | 
|  | *error = | 
|  | "use_explicit_schur_complement only supports " | 
|  | "SCHUR_JACOBI as the preconditioner."; | 
|  | return false; | 
|  | } | 
|  | if (options.use_spse_initialization) { | 
|  | *error = | 
|  | "use_explicit_schur_complement does not support " | 
|  | "use_spse_initialization."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (options.use_spse_initialization || | 
|  | options.preconditioner_type == SCHUR_POWER_SERIES_EXPANSION) { | 
|  | OPTION_GE(max_num_spse_iterations, 1) | 
|  | OPTION_GE(spse_tolerance, 0.0) | 
|  | } | 
|  |  | 
|  | if (options.use_mixed_precision_solves) { | 
|  | *error = "Can't use use_mixed_precision_solves with ITERATIVE_SCHUR"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.dynamic_sparsity) { | 
|  | *error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.preconditioner_type == SUBSET) { | 
|  | *error = "Can't use SUBSET preconditioner with ITERATIVE_SCHUR"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // CLUSTER_JACOBI and CLUSTER_TRIDIAGONAL require sparse Cholesky | 
|  | // factorization. | 
|  | if (options.preconditioner_type == CLUSTER_JACOBI || | 
|  | options.preconditioner_type == CLUSTER_TRIDIAGONAL) { | 
|  | return OptionsAreValidForSparseCholeskyBasedSolver(options, error); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForCgnr(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | CHECK_EQ(options.linear_solver_type, CGNR); | 
|  |  | 
|  | if (options.preconditioner_type != IDENTITY && | 
|  | options.preconditioner_type != JACOBI && | 
|  | options.preconditioner_type != SUBSET) { | 
|  | *error = absl::StrFormat( | 
|  | "Can't use CGNR with preconditioner_type = %s.", | 
|  | PreconditionerTypeToString(options.preconditioner_type)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.use_mixed_precision_solves) { | 
|  | *error = "use_mixed_precision_solves cannot be used with CGNR"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.dynamic_sparsity) { | 
|  | *error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.preconditioner_type == SUBSET) { | 
|  | if (options.sparse_linear_algebra_library_type == CUDA_SPARSE) { | 
|  | *error = | 
|  | "Can't use CGNR with preconditioner_type = SUBSET when " | 
|  | "sparse_linear_algebra_library_type = CUDA_SPARSE."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (options.residual_blocks_for_subset_preconditioner.empty()) { | 
|  | *error = | 
|  | "When using SUBSET preconditioner, " | 
|  | "residual_blocks_for_subset_preconditioner cannot be empty"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // SUBSET preconditioner requires sparse Cholesky factorization. | 
|  | if (!OptionsAreValidForSparseCholeskyBasedSolver(options, error)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check options for CGNR with CUDA_SPARSE. | 
|  | if (options.sparse_linear_algebra_library_type == CUDA_SPARSE) { | 
|  | if (!IsSparseLinearAlgebraLibraryTypeAvailable(CUDA_SPARSE)) { | 
|  | *error = | 
|  | "Can't use CGNR with sparse_linear_algebra_library_type = " | 
|  | "CUDA_SPARSE because support was not enabled when Ceres was built."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool OptionsAreValidForLinearSolver(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | switch (options.linear_solver_type) { | 
|  | case DENSE_NORMAL_CHOLESKY: | 
|  | return OptionsAreValidForDenseNormalCholesky(options, error); | 
|  | case DENSE_QR: | 
|  | return OptionsAreValidForDenseQr(options, error); | 
|  | case SPARSE_NORMAL_CHOLESKY: | 
|  | return OptionsAreValidForSparseNormalCholesky(options, error); | 
|  | case DENSE_SCHUR: | 
|  | return OptionsAreValidForDenseSchur(options, error); | 
|  | case SPARSE_SCHUR: | 
|  | return OptionsAreValidForSparseSchur(options, error); | 
|  | case ITERATIVE_SCHUR: | 
|  | return OptionsAreValidForIterativeSchur(options, error); | 
|  | case CGNR: | 
|  | return OptionsAreValidForCgnr(options, error); | 
|  | default: | 
|  | LOG(FATAL) << "Congratulations you have found a bug. Please report " | 
|  | "this to the " | 
|  | "Ceres Solver developers. Unknown linear solver type: " | 
|  | << LinearSolverTypeToString(options.linear_solver_type); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TrustRegionOptionsAreValid(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | OPTION_GT(initial_trust_region_radius, 0.0); | 
|  | OPTION_GT(min_trust_region_radius, 0.0); | 
|  | OPTION_GT(max_trust_region_radius, 0.0); | 
|  | OPTION_LE_OPTION(min_trust_region_radius, max_trust_region_radius); | 
|  | OPTION_LE_OPTION(min_trust_region_radius, initial_trust_region_radius); | 
|  | OPTION_LE_OPTION(initial_trust_region_radius, max_trust_region_radius); | 
|  | OPTION_GE(min_relative_decrease, 0.0); | 
|  | OPTION_GE(min_lm_diagonal, 0.0); | 
|  | OPTION_GE(max_lm_diagonal, 0.0); | 
|  | OPTION_LE_OPTION(min_lm_diagonal, max_lm_diagonal); | 
|  | OPTION_GE(max_num_consecutive_invalid_steps, 0); | 
|  | OPTION_GT(eta, 0.0); | 
|  | OPTION_GE(min_linear_solver_iterations, 0); | 
|  | OPTION_GE(max_linear_solver_iterations, 0); | 
|  | OPTION_LE_OPTION(min_linear_solver_iterations, max_linear_solver_iterations); | 
|  |  | 
|  | if (options.use_inner_iterations) { | 
|  | OPTION_GE(inner_iteration_tolerance, 0.0); | 
|  | } | 
|  |  | 
|  | if (options.use_nonmonotonic_steps) { | 
|  | OPTION_GT(max_consecutive_nonmonotonic_steps, 0); | 
|  | } | 
|  |  | 
|  | if ((options.trust_region_strategy_type == DOGLEG) && | 
|  | IsIterativeSolver(options.linear_solver_type)) { | 
|  | *error = | 
|  | "DOGLEG only supports exact factorization based linear " | 
|  | "solvers. If you want to use an iterative solver please " | 
|  | "use LEVENBERG_MARQUARDT as the trust_region_strategy_type"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!OptionsAreValidForLinearSolver(options, error)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!options.trust_region_minimizer_iterations_to_dump.empty() && | 
|  | options.trust_region_problem_dump_format_type != CONSOLE && | 
|  | options.trust_region_problem_dump_directory.empty()) { | 
|  | *error = "Solver::Options::trust_region_problem_dump_directory is empty."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LineSearchOptionsAreValid(const Solver::Options& options, | 
|  | std::string* error) { | 
|  | OPTION_GT(max_lbfgs_rank, 0); | 
|  | OPTION_GT(min_line_search_step_size, 0.0); | 
|  | OPTION_GT(max_line_search_step_contraction, 0.0); | 
|  | OPTION_LT(max_line_search_step_contraction, 1.0); | 
|  | OPTION_LT_OPTION(max_line_search_step_contraction, | 
|  | min_line_search_step_contraction); | 
|  | OPTION_LE(min_line_search_step_contraction, 1.0); | 
|  | OPTION_GE(max_num_line_search_step_size_iterations, | 
|  | (options.minimizer_type == ceres::TRUST_REGION ? 0 : 1)); | 
|  | OPTION_GT(line_search_sufficient_function_decrease, 0.0); | 
|  | OPTION_LT_OPTION(line_search_sufficient_function_decrease, | 
|  | line_search_sufficient_curvature_decrease); | 
|  | OPTION_LT(line_search_sufficient_curvature_decrease, 1.0); | 
|  | OPTION_GT(max_line_search_step_expansion, 1.0); | 
|  |  | 
|  | if ((options.line_search_direction_type == ceres::BFGS || | 
|  | options.line_search_direction_type == ceres::LBFGS) && | 
|  | options.line_search_type != ceres::WOLFE) { | 
|  | *error = | 
|  | std::string( | 
|  | "Invalid configuration: Solver::Options::line_search_type = ") + | 
|  | std::string(LineSearchTypeToString(options.line_search_type)) + | 
|  | std::string( | 
|  | ". When using (L)BFGS, " | 
|  | "Solver::Options::line_search_type must be set to WOLFE."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Warn user if they have requested BISECTION interpolation, but constraints | 
|  | // on max/min step size change during line search prevent bisection scaling | 
|  | // from occurring. Warn only, as this is likely a user mistake, but one | 
|  | // which does not prevent us from continuing. | 
|  | if (options.line_search_interpolation_type == ceres::BISECTION && | 
|  | (options.max_line_search_step_contraction > 0.5 || | 
|  | options.min_line_search_step_contraction < 0.5)) { | 
|  | LOG(WARNING) | 
|  | << "Line search interpolation type is BISECTION, but specified " | 
|  | << "max_line_search_step_contraction: " | 
|  | << options.max_line_search_step_contraction << ", and " | 
|  | << "min_line_search_step_contraction: " | 
|  | << options.min_line_search_step_contraction | 
|  | << ", prevent bisection (0.5) scaling, continuing with solve " | 
|  | "regardless."; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #undef OPTION_OP | 
|  | #undef OPTION_OP_OPTION | 
|  | #undef OPTION_GT | 
|  | #undef OPTION_GE | 
|  | #undef OPTION_LE | 
|  | #undef OPTION_LT | 
|  | #undef OPTION_LE_OPTION | 
|  | #undef OPTION_LT_OPTION | 
|  |  | 
|  | void StringifyOrdering(const std::vector<int>& ordering, std::string* report) { | 
|  | if (ordering.empty()) { | 
|  | absl::StrAppendFormat(report, "AUTOMATIC"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < ordering.size() - 1; ++i) { | 
|  | absl::StrAppendFormat(report, "%d,", ordering[i]); | 
|  | } | 
|  | absl::StrAppendFormat(report, "%d", ordering.back()); | 
|  | } | 
|  |  | 
|  | void SummarizeGivenProgram(const internal::Program& program, | 
|  | Solver::Summary* summary) { | 
|  | // clang-format off | 
|  | summary->num_parameter_blocks     = program.NumParameterBlocks(); | 
|  | summary->num_parameters           = program.NumParameters(); | 
|  | summary->num_effective_parameters = program.NumEffectiveParameters(); | 
|  | summary->num_residual_blocks      = program.NumResidualBlocks(); | 
|  | summary->num_residuals            = program.NumResiduals(); | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | void SummarizeReducedProgram(const internal::Program& program, | 
|  | Solver::Summary* summary) { | 
|  | // clang-format off | 
|  | summary->num_parameter_blocks_reduced     = program.NumParameterBlocks(); | 
|  | summary->num_parameters_reduced           = program.NumParameters(); | 
|  | summary->num_effective_parameters_reduced = program.NumEffectiveParameters(); | 
|  | summary->num_residual_blocks_reduced      = program.NumResidualBlocks(); | 
|  | summary->num_residuals_reduced            = program.NumResiduals(); | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | void PreSolveSummarize(const Solver::Options& options, | 
|  | const internal::ProblemImpl* problem, | 
|  | Solver::Summary* summary) { | 
|  | SummarizeGivenProgram(problem->program(), summary); | 
|  | internal::OrderingToGroupSizes(options.linear_solver_ordering.get(), | 
|  | &(summary->linear_solver_ordering_given)); | 
|  | internal::OrderingToGroupSizes(options.inner_iteration_ordering.get(), | 
|  | &(summary->inner_iteration_ordering_given)); | 
|  |  | 
|  | // clang-format off | 
|  | summary->dense_linear_algebra_library_type  = options.dense_linear_algebra_library_type; | 
|  | summary->dogleg_type                        = options.dogleg_type; | 
|  | summary->inner_iteration_time_in_seconds    = 0.0; | 
|  | summary->num_line_search_steps              = 0; | 
|  | summary->line_search_cost_evaluation_time_in_seconds = 0.0; | 
|  | summary->line_search_gradient_evaluation_time_in_seconds = 0.0; | 
|  | summary->line_search_polynomial_minimization_time_in_seconds = 0.0; | 
|  | summary->line_search_total_time_in_seconds  = 0.0; | 
|  | summary->inner_iterations_given             = options.use_inner_iterations; | 
|  | summary->line_search_direction_type         = options.line_search_direction_type; | 
|  | summary->line_search_interpolation_type     = options.line_search_interpolation_type; | 
|  | summary->line_search_type                   = options.line_search_type; | 
|  | summary->linear_solver_type_given           = options.linear_solver_type; | 
|  | summary->max_lbfgs_rank                     = options.max_lbfgs_rank; | 
|  | summary->minimizer_type                     = options.minimizer_type; | 
|  | summary->nonlinear_conjugate_gradient_type  = options.nonlinear_conjugate_gradient_type; | 
|  | summary->num_threads_given                  = options.num_threads; | 
|  | summary->preconditioner_type_given          = options.preconditioner_type; | 
|  | summary->sparse_linear_algebra_library_type = options.sparse_linear_algebra_library_type; | 
|  | summary->linear_solver_ordering_type        = options.linear_solver_ordering_type; | 
|  | summary->trust_region_strategy_type         = options.trust_region_strategy_type; | 
|  | summary->visibility_clustering_type         = options.visibility_clustering_type; | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | void PostSolveSummarize(const internal::PreprocessedProblem& pp, | 
|  | Solver::Summary* summary) { | 
|  | internal::OrderingToGroupSizes(pp.options.linear_solver_ordering.get(), | 
|  | &(summary->linear_solver_ordering_used)); | 
|  | // TODO(sameeragarwal): Update the preprocessor to collapse the | 
|  | // second and higher groups into one group when nested dissection is | 
|  | // used. | 
|  | internal::OrderingToGroupSizes(pp.options.inner_iteration_ordering.get(), | 
|  | &(summary->inner_iteration_ordering_used)); | 
|  |  | 
|  | // clang-format off | 
|  | summary->inner_iterations_used          = pp.inner_iteration_minimizer != nullptr; | 
|  | summary->linear_solver_type_used        = pp.linear_solver_options.type; | 
|  | summary->mixed_precision_solves_used    = pp.options.use_mixed_precision_solves; | 
|  | summary->num_threads_used               = pp.options.num_threads; | 
|  | summary->preconditioner_type_used       = pp.options.preconditioner_type; | 
|  | // clang-format on | 
|  |  | 
|  | internal::SetSummaryFinalCost(summary); | 
|  |  | 
|  | if (pp.reduced_program != nullptr) { | 
|  | SummarizeReducedProgram(*pp.reduced_program, summary); | 
|  | } | 
|  |  | 
|  | using internal::CallStatistics; | 
|  |  | 
|  | // It is possible that no evaluator was created. This would be the | 
|  | // case if the preprocessor failed, or if the reduced problem did | 
|  | // not contain any parameter blocks. Thus, only extract the | 
|  | // evaluator statistics if one exists. | 
|  | if (pp.evaluator != nullptr) { | 
|  | const std::map<std::string, CallStatistics>& evaluator_statistics = | 
|  | pp.evaluator->Statistics(); | 
|  | { | 
|  | const CallStatistics& call_stats = FindWithDefault( | 
|  | evaluator_statistics, "Evaluator::Residual", CallStatistics()); | 
|  |  | 
|  | summary->residual_evaluation_time_in_seconds = | 
|  | absl::ToDoubleSeconds(call_stats.time); | 
|  | summary->num_residual_evaluations = call_stats.calls; | 
|  | } | 
|  | { | 
|  | const CallStatistics& call_stats = FindWithDefault( | 
|  | evaluator_statistics, "Evaluator::Jacobian", CallStatistics()); | 
|  |  | 
|  | summary->jacobian_evaluation_time_in_seconds = | 
|  | absl::ToDoubleSeconds(call_stats.time); | 
|  | summary->num_jacobian_evaluations = call_stats.calls; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Again, like the evaluator, there may or may not be a linear | 
|  | // solver from which we can extract run time statistics. In | 
|  | // particular the line search solver does not use a linear solver. | 
|  | if (pp.linear_solver != nullptr) { | 
|  | const std::map<std::string, CallStatistics>& linear_solver_statistics = | 
|  | pp.linear_solver->Statistics(); | 
|  | const CallStatistics& call_stats = FindWithDefault( | 
|  | linear_solver_statistics, "LinearSolver::Solve", CallStatistics()); | 
|  | summary->num_linear_solves = call_stats.calls; | 
|  | summary->linear_solver_time_in_seconds = | 
|  | absl::ToDoubleSeconds(call_stats.time); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Minimize(internal::PreprocessedProblem* pp, Solver::Summary* summary) { | 
|  | using internal::Minimizer; | 
|  | using internal::Program; | 
|  |  | 
|  | Program* program = pp->reduced_program.get(); | 
|  | if (pp->reduced_program->NumParameterBlocks() == 0) { | 
|  | summary->message = | 
|  | "Function tolerance reached. " | 
|  | "No non-constant parameter blocks found."; | 
|  | summary->termination_type = CONVERGENCE; | 
|  | if (pp->options.logging_type != SILENT) { | 
|  | VLOG(1) << summary->message; | 
|  | } | 
|  | summary->initial_cost = summary->fixed_cost; | 
|  | summary->final_cost = summary->fixed_cost; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const Vector original_reduced_parameters = pp->reduced_parameters; | 
|  | auto minimizer = Minimizer::Create(pp->options.minimizer_type); | 
|  | minimizer->Minimize( | 
|  | pp->minimizer_options, pp->reduced_parameters.data(), summary); | 
|  |  | 
|  | program->StateVectorToParameterBlocks( | 
|  | summary->IsSolutionUsable() ? pp->reduced_parameters.data() | 
|  | : original_reduced_parameters.data()); | 
|  | program->CopyParameterBlockStateToUserState(); | 
|  | } | 
|  |  | 
|  | std::string SchurStructureToString(const int row_block_size, | 
|  | const int e_block_size, | 
|  | const int f_block_size) { | 
|  | const std::string row = (row_block_size == Eigen::Dynamic) | 
|  | ? "d" | 
|  | : absl::StrFormat("%d", row_block_size); | 
|  |  | 
|  | const std::string e = (e_block_size == Eigen::Dynamic) | 
|  | ? "d" | 
|  | : absl::StrFormat("%d", e_block_size); | 
|  |  | 
|  | const std::string f = (f_block_size == Eigen::Dynamic) | 
|  | ? "d" | 
|  | : absl::StrFormat("%d", f_block_size); | 
|  |  | 
|  | return absl::StrFormat("%s,%s,%s", row, e, f); | 
|  | } | 
|  |  | 
|  | #ifndef CERES_NO_CUDA | 
|  | bool IsCudaRequired(const Solver::Options& options) { | 
|  | if (options.linear_solver_type == DENSE_NORMAL_CHOLESKY || | 
|  | options.linear_solver_type == DENSE_SCHUR || | 
|  | options.linear_solver_type == DENSE_QR) { | 
|  | return (options.dense_linear_algebra_library_type == CUDA); | 
|  | } | 
|  | if (options.linear_solver_type == CGNR || | 
|  | options.linear_solver_type == SPARSE_SCHUR || | 
|  | options.linear_solver_type == SPARSE_NORMAL_CHOLESKY || | 
|  | (options.linear_solver_type == ITERATIVE_SCHUR && | 
|  | (options.preconditioner_type == CLUSTER_JACOBI || | 
|  | options.preconditioner_type == CLUSTER_TRIDIAGONAL))) { | 
|  | return (options.sparse_linear_algebra_library_type == CUDA_SPARSE); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool Solver::Options::IsValid(std::string* error) const { | 
|  | if (!CommonOptionsAreValid(*this, error)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (minimizer_type == TRUST_REGION && | 
|  | !TrustRegionOptionsAreValid(*this, error)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We do not know if the problem is bounds constrained or not, if it | 
|  | // is then the trust region solver will also use the line search | 
|  | // solver to do a projection onto the box constraints, so make sure | 
|  | // that the line search options are checked independent of what | 
|  | // minimizer algorithm is being used. | 
|  | return LineSearchOptionsAreValid(*this, error); | 
|  | } | 
|  |  | 
|  | Solver::~Solver() = default; | 
|  |  | 
|  | void Solver::Solve(const Solver::Options& options, | 
|  | Problem* problem, | 
|  | Solver::Summary* summary) { | 
|  | using internal::PreprocessedProblem; | 
|  | using internal::Preprocessor; | 
|  | using internal::ProblemImpl; | 
|  | using internal::Program; | 
|  |  | 
|  | CHECK(problem != nullptr); | 
|  | CHECK(summary != nullptr); | 
|  |  | 
|  | const absl::Time start_time = absl::Now(); | 
|  | *summary = Summary(); | 
|  | if (!options.IsValid(&summary->message)) { | 
|  | LOG(ERROR) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ProblemImpl* problem_impl = problem->mutable_impl(); | 
|  | Program* program = problem_impl->mutable_program(); | 
|  | PreSolveSummarize(options, problem_impl, summary); | 
|  |  | 
|  | #ifndef CERES_NO_CUDA | 
|  | if (IsCudaRequired(options)) { | 
|  | if (!problem_impl->context()->InitCuda(&summary->message)) { | 
|  | LOG(ERROR) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif  // CERES_NO_CUDA | 
|  |  | 
|  | // If gradient_checking is enabled, wrap all cost functions in a | 
|  | // gradient checker and install a callback that terminates if any gradient | 
|  | // error is detected. | 
|  | std::unique_ptr<internal::ProblemImpl> gradient_checking_problem; | 
|  | internal::GradientCheckingIterationCallback gradient_checking_callback; | 
|  | Solver::Options modified_options = options; | 
|  | if (options.check_gradients) { | 
|  | modified_options.callbacks.push_back(&gradient_checking_callback); | 
|  | gradient_checking_problem = CreateGradientCheckingProblemImpl( | 
|  | problem_impl, | 
|  | options.gradient_check_numeric_derivative_relative_step_size, | 
|  | options.gradient_check_relative_precision, | 
|  | &gradient_checking_callback); | 
|  | problem_impl = gradient_checking_problem.get(); | 
|  | program = problem_impl->mutable_program(); | 
|  | } | 
|  |  | 
|  | // Make sure that all the parameter blocks states are set to the | 
|  | // values provided by the user. | 
|  | program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
|  |  | 
|  | // The main thread also does work so we only need to launch num_threads - 1. | 
|  | problem_impl->context()->EnsureMinimumThreads(options.num_threads - 1); | 
|  |  | 
|  | auto preprocessor = Preprocessor::Create(modified_options.minimizer_type); | 
|  | PreprocessedProblem pp; | 
|  |  | 
|  | const bool status = | 
|  | preprocessor->Preprocess(modified_options, problem_impl, &pp); | 
|  |  | 
|  | // We check the linear_solver_options.type rather than | 
|  | // modified_options.linear_solver_type because, depending on the | 
|  | // lack of a Schur structure, the preprocessor may change the linear | 
|  | // solver type. | 
|  | if (status && IsSchurType(pp.linear_solver_options.type)) { | 
|  | // TODO(sameeragarwal): We can likely eliminate the duplicate call | 
|  | // to DetectStructure here and inside the linear solver, by | 
|  | // calling this in the preprocessor. | 
|  | int row_block_size; | 
|  | int e_block_size; | 
|  | int f_block_size; | 
|  | DetectStructure(*static_cast<internal::BlockSparseMatrix*>( | 
|  | pp.minimizer_options.jacobian.get()) | 
|  | ->block_structure(), | 
|  | pp.linear_solver_options.elimination_groups[0], | 
|  | &row_block_size, | 
|  | &e_block_size, | 
|  | &f_block_size); | 
|  | summary->schur_structure_given = | 
|  | SchurStructureToString(row_block_size, e_block_size, f_block_size); | 
|  | internal::GetBestSchurTemplateSpecialization( | 
|  | &row_block_size, &e_block_size, &f_block_size); | 
|  | summary->schur_structure_used = | 
|  | SchurStructureToString(row_block_size, e_block_size, f_block_size); | 
|  | } | 
|  |  | 
|  | summary->fixed_cost = pp.fixed_cost; | 
|  | summary->preprocessor_time_in_seconds = | 
|  | absl::ToDoubleSeconds(absl::Now() - start_time); | 
|  |  | 
|  | if (status) { | 
|  | const absl::Time minimizer_start_time = absl::Now(); | 
|  | Minimize(&pp, summary); | 
|  | summary->minimizer_time_in_seconds = | 
|  | absl::ToDoubleSeconds(absl::Now() - minimizer_start_time); | 
|  | } else { | 
|  | summary->message = pp.error; | 
|  | } | 
|  |  | 
|  | const absl::Time postprocessor_start_time = absl::Now(); | 
|  | problem_impl = problem->mutable_impl(); | 
|  | program = problem_impl->mutable_program(); | 
|  | // On exit, ensure that the parameter blocks again point at the user | 
|  | // provided values and the parameter blocks are numbered according | 
|  | // to their position in the original user provided program. | 
|  | program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  | PostSolveSummarize(pp, summary); | 
|  | summary->postprocessor_time_in_seconds = | 
|  | absl::ToDoubleSeconds(absl::Now() - postprocessor_start_time); | 
|  |  | 
|  | // If the gradient checker reported an error, we want to report FAILURE | 
|  | // instead of USER_FAILURE and provide the error log. | 
|  | if (gradient_checking_callback.gradient_error_detected()) { | 
|  | summary->termination_type = FAILURE; | 
|  | summary->message = gradient_checking_callback.error_log(); | 
|  | } | 
|  |  | 
|  | summary->total_time_in_seconds = | 
|  | absl::ToDoubleSeconds(absl::Now() - start_time); | 
|  | } | 
|  |  | 
|  | void Solve(const Solver::Options& options, | 
|  | Problem* problem, | 
|  | Solver::Summary* summary) { | 
|  | Solver solver; | 
|  | solver.Solve(options, problem, summary); | 
|  | } | 
|  |  | 
|  | std::string Solver::Summary::BriefReport() const { | 
|  | return absl::StrFormat( | 
|  | "Ceres Solver Report: " | 
|  | "Iterations: %d, " | 
|  | "Initial cost: %e, " | 
|  | "Final cost: %e, " | 
|  | "Termination: %s", | 
|  | num_successful_steps + num_unsuccessful_steps, | 
|  | initial_cost, | 
|  | final_cost, | 
|  | TerminationTypeToString(termination_type)); | 
|  | } | 
|  |  | 
|  | std::string Solver::Summary::FullReport() const { | 
|  | using internal::VersionString; | 
|  |  | 
|  | // NOTE operator+ is not usable for concatenating a string and a string_view. | 
|  | std::string report = | 
|  | absl::StrCat("\nSolver Summary (v ", VersionString(), ")\n\n"); | 
|  |  | 
|  | absl::StrAppendFormat(&report, "%45s    %21s\n", "Original", "Reduced"); | 
|  | absl::StrAppendFormat(&report, | 
|  | "Parameter blocks    % 25d% 25d\n", | 
|  | num_parameter_blocks, | 
|  | num_parameter_blocks_reduced); | 
|  | absl::StrAppendFormat(&report, | 
|  | "Parameters          % 25d% 25d\n", | 
|  | num_parameters, | 
|  | num_parameters_reduced); | 
|  | if (num_effective_parameters_reduced != num_parameters_reduced) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "Effective parameters% 25d% 25d\n", | 
|  | num_effective_parameters, | 
|  | num_effective_parameters_reduced); | 
|  | } | 
|  | absl::StrAppendFormat(&report, | 
|  | "Residual blocks     % 25d% 25d\n", | 
|  | num_residual_blocks, | 
|  | num_residual_blocks_reduced); | 
|  | absl::StrAppendFormat(&report, | 
|  | "Residuals           % 25d% 25d\n", | 
|  | num_residuals, | 
|  | num_residuals_reduced); | 
|  |  | 
|  | if (minimizer_type == TRUST_REGION) { | 
|  | // TRUST_SEARCH HEADER | 
|  | absl::StrAppendFormat( | 
|  | &report, "\nMinimizer                 %19s\n", "TRUST_REGION"); | 
|  |  | 
|  | if (linear_solver_type_used == DENSE_NORMAL_CHOLESKY || | 
|  | linear_solver_type_used == DENSE_SCHUR || | 
|  | linear_solver_type_used == DENSE_QR) { | 
|  | const char* mixed_precision_suffix = | 
|  | (mixed_precision_solves_used ? "(Mixed Precision)" : ""); | 
|  | absl::StrAppendFormat(&report, | 
|  | "\nDense linear algebra library  %15s %s\n", | 
|  | DenseLinearAlgebraLibraryTypeToString( | 
|  | dense_linear_algebra_library_type), | 
|  | mixed_precision_suffix); | 
|  | } | 
|  |  | 
|  | absl::StrAppendFormat( | 
|  | &report, | 
|  | "Trust region strategy     %19s", | 
|  | TrustRegionStrategyTypeToString(trust_region_strategy_type)); | 
|  | if (trust_region_strategy_type == DOGLEG) { | 
|  | if (dogleg_type == TRADITIONAL_DOGLEG) { | 
|  | absl::StrAppendFormat(&report, " (TRADITIONAL)"); | 
|  | } else { | 
|  | absl::StrAppendFormat(&report, " (SUBSPACE)"); | 
|  | } | 
|  | } | 
|  |  | 
|  | const bool used_sparse_linear_algebra_library = | 
|  | linear_solver_type_used == SPARSE_NORMAL_CHOLESKY || | 
|  | linear_solver_type_used == SPARSE_SCHUR || | 
|  | linear_solver_type_used == CGNR || | 
|  | (linear_solver_type_used == ITERATIVE_SCHUR && | 
|  | (preconditioner_type_used == CLUSTER_JACOBI || | 
|  | preconditioner_type_used == CLUSTER_TRIDIAGONAL)); | 
|  |  | 
|  | const bool linear_solver_ordering_required = | 
|  | linear_solver_type_used == SPARSE_SCHUR || | 
|  | (linear_solver_type_used == ITERATIVE_SCHUR && | 
|  | (preconditioner_type_used == CLUSTER_JACOBI || | 
|  | preconditioner_type_used == CLUSTER_TRIDIAGONAL)) || | 
|  | (linear_solver_type_used == CGNR && preconditioner_type_used == SUBSET); | 
|  |  | 
|  | if (used_sparse_linear_algebra_library) { | 
|  | const char* mixed_precision_suffix = | 
|  | (mixed_precision_solves_used ? "(Mixed Precision)" : ""); | 
|  | if (linear_solver_ordering_required) { | 
|  | absl::StrAppendFormat( | 
|  | &report, | 
|  | "\nSparse linear algebra library %15s + %s %s\n", | 
|  | SparseLinearAlgebraLibraryTypeToString( | 
|  | sparse_linear_algebra_library_type), | 
|  | LinearSolverOrderingTypeToString(linear_solver_ordering_type), | 
|  | mixed_precision_suffix); | 
|  | } else { | 
|  | absl::StrAppendFormat(&report, | 
|  | "\nSparse linear algebra library %15s %s\n", | 
|  | SparseLinearAlgebraLibraryTypeToString( | 
|  | sparse_linear_algebra_library_type), | 
|  | mixed_precision_suffix); | 
|  | } | 
|  | } | 
|  |  | 
|  | absl::StrAppendFormat(&report, "\n"); | 
|  | absl::StrAppendFormat(&report, "%45s    %21s\n", "Given", "Used"); | 
|  | absl::StrAppendFormat(&report, | 
|  | "Linear solver       %25s%25s\n", | 
|  | LinearSolverTypeToString(linear_solver_type_given), | 
|  | LinearSolverTypeToString(linear_solver_type_used)); | 
|  |  | 
|  | if (IsIterativeSolver(linear_solver_type_given)) { | 
|  | absl::StrAppendFormat( | 
|  | &report, | 
|  | "Preconditioner      %25s%25s\n", | 
|  | PreconditionerTypeToString(preconditioner_type_given), | 
|  | PreconditionerTypeToString(preconditioner_type_used)); | 
|  | } | 
|  |  | 
|  | if (preconditioner_type_used == CLUSTER_JACOBI || | 
|  | preconditioner_type_used == CLUSTER_TRIDIAGONAL) { | 
|  | absl::StrAppendFormat( | 
|  | &report, | 
|  | "Visibility clustering%24s%25s\n", | 
|  | VisibilityClusteringTypeToString(visibility_clustering_type), | 
|  | VisibilityClusteringTypeToString(visibility_clustering_type)); | 
|  | } | 
|  | absl::StrAppendFormat(&report, | 
|  | "Threads             % 25d% 25d\n", | 
|  | num_threads_given, | 
|  | num_threads_used); | 
|  |  | 
|  | std::string given; | 
|  | StringifyOrdering(linear_solver_ordering_given, &given); | 
|  | std::string used; | 
|  | StringifyOrdering(linear_solver_ordering_used, &used); | 
|  | absl::StrAppendFormat( | 
|  | &report, "Linear solver ordering %22s %24s\n", given, used); | 
|  | if (IsSchurType(linear_solver_type_used)) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "Schur structure        %22s %24s\n", | 
|  | schur_structure_given, | 
|  | schur_structure_used); | 
|  | } | 
|  |  | 
|  | if (inner_iterations_given) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "Use inner iterations     %20s     %20s\n", | 
|  | inner_iterations_given ? "True" : "False", | 
|  | inner_iterations_used ? "True" : "False"); | 
|  | } | 
|  |  | 
|  | if (inner_iterations_used) { | 
|  | std::string given; | 
|  | StringifyOrdering(inner_iteration_ordering_given, &given); | 
|  | std::string used; | 
|  | StringifyOrdering(inner_iteration_ordering_used, &used); | 
|  | absl::StrAppendFormat( | 
|  | &report, "Inner iteration ordering %20s %24s\n", given, used); | 
|  | } | 
|  | } else { | 
|  | // LINE_SEARCH HEADER | 
|  | absl::StrAppendFormat( | 
|  | &report, "\nMinimizer                 %19s\n", "LINE_SEARCH"); | 
|  |  | 
|  | std::string line_search_direction_string; | 
|  | if (line_search_direction_type == LBFGS) { | 
|  | line_search_direction_string = | 
|  | absl::StrFormat("LBFGS (%d)", max_lbfgs_rank); | 
|  | } else if (line_search_direction_type == NONLINEAR_CONJUGATE_GRADIENT) { | 
|  | line_search_direction_string = NonlinearConjugateGradientTypeToString( | 
|  | nonlinear_conjugate_gradient_type); | 
|  | } else { | 
|  | line_search_direction_string = | 
|  | LineSearchDirectionTypeToString(line_search_direction_type); | 
|  | } | 
|  |  | 
|  | absl::StrAppendFormat(&report, | 
|  | "Line search direction     %19s\n", | 
|  | line_search_direction_string); | 
|  |  | 
|  | const std::string line_search_type_string = absl::StrFormat( | 
|  | "%s %s", | 
|  | LineSearchInterpolationTypeToString(line_search_interpolation_type), | 
|  | LineSearchTypeToString(line_search_type)); | 
|  | absl::StrAppendFormat( | 
|  | &report, "Line search type          %19s\n", line_search_type_string); | 
|  | absl::StrAppendFormat(&report, "\n"); | 
|  |  | 
|  | absl::StrAppendFormat(&report, "%45s    %21s\n", "Given", "Used"); | 
|  | absl::StrAppendFormat(&report, | 
|  | "Threads             % 25d% 25d\n", | 
|  | num_threads_given, | 
|  | num_threads_used); | 
|  | } | 
|  |  | 
|  | absl::StrAppendFormat(&report, "\nCost:\n"); | 
|  | absl::StrAppendFormat(&report, "Initial        % 30e\n", initial_cost); | 
|  | if (termination_type != FAILURE && termination_type != USER_FAILURE) { | 
|  | absl::StrAppendFormat(&report, "Final          % 30e\n", final_cost); | 
|  | absl::StrAppendFormat( | 
|  | &report, "Change         % 30e\n", initial_cost - final_cost); | 
|  | } | 
|  |  | 
|  | absl::StrAppendFormat(&report, | 
|  | "\nMinimizer iterations         % 16d\n", | 
|  | num_successful_steps + num_unsuccessful_steps); | 
|  |  | 
|  | // Successful/Unsuccessful steps only matter in the case of the | 
|  | // trust region solver. Line search terminates when it encounters | 
|  | // the first unsuccessful step. | 
|  | if (minimizer_type == TRUST_REGION) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "Successful steps               % 14d\n", | 
|  | num_successful_steps); | 
|  | absl::StrAppendFormat(&report, | 
|  | "Unsuccessful steps             % 14d\n", | 
|  | num_unsuccessful_steps); | 
|  | } | 
|  | if (inner_iterations_used) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "Steps with inner iterations    % 14d\n", | 
|  | num_inner_iteration_steps); | 
|  | } | 
|  |  | 
|  | const bool line_search_used = | 
|  | (minimizer_type == LINE_SEARCH || | 
|  | (minimizer_type == TRUST_REGION && is_constrained)); | 
|  |  | 
|  | if (line_search_used) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "Line search steps              % 14d\n", | 
|  | num_line_search_steps); | 
|  | } | 
|  |  | 
|  | absl::StrAppendFormat(&report, "\nTime (in seconds):\n"); | 
|  | absl::StrAppendFormat( | 
|  | &report, "Preprocessor        %25.6f\n", preprocessor_time_in_seconds); | 
|  |  | 
|  | absl::StrAppendFormat(&report, | 
|  | "\n  Residual only evaluation %18.6f (%d)\n", | 
|  | residual_evaluation_time_in_seconds, | 
|  | num_residual_evaluations); | 
|  | if (line_search_used) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "    Line search cost evaluation    %10.6f\n", | 
|  | line_search_cost_evaluation_time_in_seconds); | 
|  | } | 
|  | absl::StrAppendFormat(&report, | 
|  | "  Jacobian & residual evaluation %12.6f (%d)\n", | 
|  | jacobian_evaluation_time_in_seconds, | 
|  | num_jacobian_evaluations); | 
|  | if (line_search_used) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "    Line search gradient evaluation   %6.6f\n", | 
|  | line_search_gradient_evaluation_time_in_seconds); | 
|  | } | 
|  |  | 
|  | if (minimizer_type == TRUST_REGION) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "  Linear solver       %23.6f (%d)\n", | 
|  | linear_solver_time_in_seconds, | 
|  | num_linear_solves); | 
|  | } | 
|  |  | 
|  | if (inner_iterations_used) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "  Inner iterations    %23.6f\n", | 
|  | inner_iteration_time_in_seconds); | 
|  | } | 
|  |  | 
|  | if (line_search_used) { | 
|  | absl::StrAppendFormat(&report, | 
|  | "  Line search polynomial minimization  %.6f\n", | 
|  | line_search_polynomial_minimization_time_in_seconds); | 
|  | } | 
|  |  | 
|  | absl::StrAppendFormat( | 
|  | &report, "Minimizer           %25.6f\n\n", minimizer_time_in_seconds); | 
|  |  | 
|  | absl::StrAppendFormat( | 
|  | &report, "Postprocessor        %24.6f\n", postprocessor_time_in_seconds); | 
|  |  | 
|  | absl::StrAppendFormat( | 
|  | &report, "Total               %25.6f\n\n", total_time_in_seconds); | 
|  |  | 
|  | absl::StrAppendFormat(&report, | 
|  | "Termination:        %25s (%s)\n", | 
|  | TerminationTypeToString(termination_type), | 
|  | message); | 
|  | return report; | 
|  | } | 
|  |  | 
|  | bool Solver::Summary::IsSolutionUsable() const { | 
|  | return internal::IsSolutionUsable(*this); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres |