| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2024 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/sparse_cholesky.h" | 
 |  | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <random> | 
 | #include <sstream> | 
 | #include <string> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Cholesky" | 
 | #include "Eigen/Core" | 
 | #include "Eigen/Dense" | 
 | #include "absl/log/check.h" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/cuda_sparse_cholesky.h" | 
 | #include "ceres/inner_product_computer.h" | 
 | #include "ceres/internal/config.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/iterative_refiner.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/types.h" | 
 | #include "gmock/gmock.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | namespace { | 
 |  | 
 | std::unique_ptr<BlockSparseMatrix> CreateRandomFullRankMatrix( | 
 |     const int num_col_blocks, | 
 |     const int min_col_block_size, | 
 |     const int max_col_block_size, | 
 |     const double block_density, | 
 |     std::mt19937& prng) { | 
 |   // Create a random matrix | 
 |   BlockSparseMatrix::RandomMatrixOptions options; | 
 |   options.num_col_blocks = num_col_blocks; | 
 |   options.min_col_block_size = min_col_block_size; | 
 |   options.max_col_block_size = max_col_block_size; | 
 |  | 
 |   options.num_row_blocks = 2 * num_col_blocks; | 
 |   options.min_row_block_size = 1; | 
 |   options.max_row_block_size = max_col_block_size; | 
 |   options.block_density = block_density; | 
 |   auto random_matrix = BlockSparseMatrix::CreateRandomMatrix(options, prng); | 
 |  | 
 |   // Add a diagonal block sparse matrix to make it full rank. | 
 |   Vector diagonal = Vector::Ones(random_matrix->num_cols()); | 
 |   auto block_diagonal = BlockSparseMatrix::CreateDiagonalMatrix( | 
 |       diagonal.data(), random_matrix->block_structure()->cols); | 
 |   random_matrix->AppendRows(*block_diagonal); | 
 |   return random_matrix; | 
 | } | 
 |  | 
 | bool ComputeExpectedSolution(const CompressedRowSparseMatrix& lhs, | 
 |                              const Vector& rhs, | 
 |                              Vector* solution) { | 
 |   Matrix eigen_lhs; | 
 |   lhs.ToDenseMatrix(&eigen_lhs); | 
 |   if (lhs.storage_type() == | 
 |       CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) { | 
 |     Matrix full_lhs = eigen_lhs.selfadjointView<Eigen::Upper>(); | 
 |     Eigen::LLT<Matrix, Eigen::Upper> llt = | 
 |         eigen_lhs.selfadjointView<Eigen::Upper>().llt(); | 
 |     if (llt.info() != Eigen::Success) { | 
 |       return false; | 
 |     } | 
 |     *solution = llt.solve(rhs); | 
 |     return (llt.info() == Eigen::Success); | 
 |   } | 
 |  | 
 |   Matrix full_lhs = eigen_lhs.selfadjointView<Eigen::Lower>(); | 
 |   Eigen::LLT<Matrix, Eigen::Lower> llt = | 
 |       eigen_lhs.selfadjointView<Eigen::Lower>().llt(); | 
 |   if (llt.info() != Eigen::Success) { | 
 |     return false; | 
 |   } | 
 |   *solution = llt.solve(rhs); | 
 |   return (llt.info() == Eigen::Success); | 
 | } | 
 |  | 
 | void SparseCholeskySolverUnitTest( | 
 |     const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
 |     const bool use_single_precision, | 
 |     const OrderingType ordering_type, | 
 |     const bool use_block_structure, | 
 |     const int num_blocks, | 
 |     const int min_block_size, | 
 |     const int max_block_size, | 
 |     const double block_density, | 
 |     std::mt19937& prng) { | 
 |   LinearSolver::Options sparse_cholesky_options; | 
 | #ifndef CERES_NO_CUDSS | 
 |   ContextImpl context; | 
 |   sparse_cholesky_options.context = &context; | 
 |   std::string error; | 
 |   CHECK(context.InitCuda(&error)) << error; | 
 | #endif  // CERES_NO_CUDSS | 
 |  | 
 |   sparse_cholesky_options.sparse_linear_algebra_library_type = | 
 |       sparse_linear_algebra_library_type; | 
 |   sparse_cholesky_options.ordering_type = ordering_type; | 
 |   sparse_cholesky_options.max_num_refinement_iterations = 0; | 
 |   sparse_cholesky_options.use_mixed_precision_solves = use_single_precision; | 
 |  | 
 |   auto sparse_cholesky = SparseCholesky::Create(sparse_cholesky_options); | 
 |   const CompressedRowSparseMatrix::StorageType storage_type = | 
 |       sparse_cholesky->StorageType(); | 
 |  | 
 |   auto m = CreateRandomFullRankMatrix( | 
 |       num_blocks, min_block_size, max_block_size, block_density, prng); | 
 |   auto inner_product_computer = InnerProductComputer::Create(*m, storage_type); | 
 |   inner_product_computer->Compute(); | 
 |   CompressedRowSparseMatrix* lhs = inner_product_computer->mutable_result(); | 
 |  | 
 |   if (!use_block_structure) { | 
 |     lhs->mutable_row_blocks()->clear(); | 
 |     lhs->mutable_col_blocks()->clear(); | 
 |   } | 
 |  | 
 |   Vector rhs = Vector::Random(lhs->num_rows()); | 
 |   Vector expected(lhs->num_rows()); | 
 |   Vector actual(lhs->num_rows()); | 
 |  | 
 |   EXPECT_TRUE(ComputeExpectedSolution(*lhs, rhs, &expected)); | 
 |   std::string message; | 
 |   EXPECT_EQ( | 
 |       sparse_cholesky->FactorAndSolve(lhs, rhs.data(), actual.data(), &message), | 
 |       LinearSolverTerminationType::SUCCESS); | 
 |   Matrix eigen_lhs; | 
 |   lhs->ToDenseMatrix(&eigen_lhs); | 
 |   const double kTolerance = | 
 |       (use_single_precision ? std::numeric_limits<float>::epsilon() | 
 |                             : std::numeric_limits<double>::epsilon()) * | 
 |       20; | 
 |  | 
 |   EXPECT_NEAR((actual - expected).norm() / actual.norm(), 0.0, kTolerance) | 
 |       << "\n" | 
 |       << eigen_lhs; | 
 | } | 
 |  | 
 | // SparseLinearAlgebraLibraryType | 
 | // FLOAT/DOUBLE | 
 | // OrderingType | 
 | // BlockStructure | 
 | using Param = | 
 |     ::testing::tuple<SparseLinearAlgebraLibraryType, bool, OrderingType, bool>; | 
 |  | 
 | std::string ParamInfoToString(testing::TestParamInfo<Param> info) { | 
 |   Param param = info.param; | 
 |   std::stringstream ss; | 
 |   ss << SparseLinearAlgebraLibraryTypeToString(::testing::get<0>(param)) << "_" | 
 |      << (::testing::get<1>(param) ? "FLOAT" : "DOUBLE") << "_" | 
 |      << ::testing::get<2>(param) << "_" | 
 |      << (::testing::get<3>(param) ? "UseBlockStructure" : "NoBlockStructure"); | 
 |   return ss.str(); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | class SparseCholeskyTest : public ::testing::TestWithParam<Param> {}; | 
 |  | 
 | TEST_P(SparseCholeskyTest, FactorAndSolve) { | 
 |   constexpr int kMinNumBlocks = 1; | 
 |   constexpr int kMaxNumBlocks = 10; | 
 |   constexpr int kNumTrials = 10; | 
 |   constexpr int kMinBlockSize = 1; | 
 |   constexpr int kMaxBlockSize = 5; | 
 |  | 
 |   Param param = GetParam(); | 
 |  | 
 |   std::mt19937 prng; | 
 |   std::uniform_real_distribution<double> distribution(0.1, 1.0); | 
 |  | 
 |   for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks; | 
 |        ++num_blocks) { | 
 |     for (int trial = 0; trial < kNumTrials; ++trial) { | 
 |       const double block_density = distribution(prng); | 
 |       SparseCholeskySolverUnitTest(::testing::get<0>(param), | 
 |                                    ::testing::get<1>(param), | 
 |                                    ::testing::get<2>(param), | 
 |                                    ::testing::get<3>(param), | 
 |                                    num_blocks, | 
 |                                    kMinBlockSize, | 
 |                                    kMaxBlockSize, | 
 |                                    block_density, | 
 |                                    prng); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 | const auto SuiteSparseCholeskyParameters = ::testing::Combine( | 
 |     ::testing::Values(SUITE_SPARSE), | 
 | #if defined(CERES_NO_CHOLMOD_FLOAT) | 
 |     ::testing::Values(false), | 
 | #else | 
 |     ::testing::Values(false, true), | 
 | #endif  // defined(CERES_NO_CHOLMOD_FLOAT) | 
 | #if defined(CERES_NO_CHOLMOD_PARTITION) | 
 |     ::testing::Values(OrderingType::AMD, OrderingType::NATURAL), | 
 | #else | 
 |     ::testing::Values( | 
 |         OrderingType::AMD, OrderingType::NESDIS, OrderingType::NATURAL), | 
 | #endif  // defined(CERES_NO_CHOLMOD_PARTITION) | 
 |     ::testing::Values(true, false)); | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(SuiteSparseCholesky, | 
 |                          SparseCholeskyTest, | 
 |                          SuiteSparseCholeskyParameters, | 
 |                          ParamInfoToString); | 
 | #endif  // !defined(CERES_NO_SUITESPARSE) | 
 |  | 
 | #ifndef CERES_NO_ACCELERATE_SPARSE | 
 | INSTANTIATE_TEST_SUITE_P( | 
 |     AccelerateSparseCholesky, | 
 |     SparseCholeskyTest, | 
 |     ::testing::Combine(::testing::Values(ACCELERATE_SPARSE), | 
 |                        ::testing::Values(false, true), | 
 |                        ::testing::Values(OrderingType::AMD, | 
 |                                          OrderingType::NESDIS, | 
 |                                          OrderingType::NATURAL), | 
 |                        ::testing::Values(true, false)), | 
 |     ParamInfoToString); | 
 | #endif | 
 |  | 
 | #ifdef CERES_USE_EIGEN_SPARSE | 
 | const auto EigenSparseCholeskyParameters = ::testing::Combine( | 
 |     ::testing::Values(EIGEN_SPARSE), | 
 |     ::testing::Values(false, true), | 
 | #if defined(CERES_NO_EIGEN_METIS) | 
 |     ::testing::Values(OrderingType::AMD, OrderingType::NATURAL), | 
 | #else | 
 |     ::testing::Values( | 
 |         OrderingType::AMD, OrderingType::NATURAL, OrderingType::NESDIS), | 
 | #endif  // defined(CERES_NO_EIGEN_METIS) | 
 |     ::testing::Values(true, false)); | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(EigenSparseCholesky, | 
 |                          SparseCholeskyTest, | 
 |                          EigenSparseCholeskyParameters, | 
 |                          ParamInfoToString); | 
 | #endif  // CERES_USE_EIGEN_SPARSE | 
 |  | 
 | #ifndef CERES_NO_CUDSS | 
 | INSTANTIATE_TEST_SUITE_P( | 
 |     CudaCholesky, | 
 |     SparseCholeskyTest, | 
 |     ::testing::Combine(::testing::Values(CUDA_SPARSE), | 
 |                        ::testing::Values(false, true), | 
 |                        ::testing::Values(OrderingType::AMD), | 
 |                        ::testing::Values(true, false)), | 
 |     ParamInfoToString); | 
 | #endif  // CERES_NO_CUDSS | 
 |  | 
 | class MockSparseCholesky : public SparseCholesky { | 
 |  public: | 
 |   MOCK_CONST_METHOD0(StorageType, CompressedRowSparseMatrix::StorageType()); | 
 |   MOCK_METHOD2(Factorize, | 
 |                LinearSolverTerminationType(CompressedRowSparseMatrix* lhs, | 
 |                                            std::string* message)); | 
 |   MOCK_METHOD3(Solve, | 
 |                LinearSolverTerminationType(const double* rhs, | 
 |                                            double* solution, | 
 |                                            std::string* message)); | 
 | }; | 
 |  | 
 | class MockSparseIterativeRefiner : public SparseIterativeRefiner { | 
 |  public: | 
 |   MockSparseIterativeRefiner() : SparseIterativeRefiner(1) {} | 
 |   MOCK_METHOD4(Refine, | 
 |                void(const SparseMatrix& lhs, | 
 |                     const double* rhs, | 
 |                     SparseCholesky* sparse_cholesky, | 
 |                     double* solution)); | 
 | }; | 
 |  | 
 | using testing::_; | 
 | using testing::Return; | 
 |  | 
 | TEST(RefinedSparseCholesky, StorageType) { | 
 |   auto sparse_cholesky = std::make_unique<MockSparseCholesky>(); | 
 |   auto iterative_refiner = std::make_unique<MockSparseIterativeRefiner>(); | 
 |   EXPECT_CALL(*sparse_cholesky, StorageType()) | 
 |       .Times(1) | 
 |       .WillRepeatedly( | 
 |           Return(CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR)); | 
 |   EXPECT_CALL(*iterative_refiner, Refine(_, _, _, _)).Times(0); | 
 |   RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky), | 
 |                                                 std::move(iterative_refiner)); | 
 |   EXPECT_EQ(refined_sparse_cholesky.StorageType(), | 
 |             CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR); | 
 | }; | 
 |  | 
 | TEST(RefinedSparseCholesky, Factorize) { | 
 |   auto* mock_sparse_cholesky = new MockSparseCholesky; | 
 |   auto* mock_iterative_refiner = new MockSparseIterativeRefiner; | 
 |   EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _)) | 
 |       .Times(1) | 
 |       .WillRepeatedly(Return(LinearSolverTerminationType::SUCCESS)); | 
 |   EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _)).Times(0); | 
 |   std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky); | 
 |   std::unique_ptr<SparseIterativeRefiner> iterative_refiner( | 
 |       mock_iterative_refiner); | 
 |   RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky), | 
 |                                                 std::move(iterative_refiner)); | 
 |   CompressedRowSparseMatrix m(1, 1, 1); | 
 |   std::string message; | 
 |   EXPECT_EQ(refined_sparse_cholesky.Factorize(&m, &message), | 
 |             LinearSolverTerminationType::SUCCESS); | 
 | }; | 
 |  | 
 | TEST(RefinedSparseCholesky, FactorAndSolveWithUnsuccessfulFactorization) { | 
 |   auto* mock_sparse_cholesky = new MockSparseCholesky; | 
 |   auto* mock_iterative_refiner = new MockSparseIterativeRefiner; | 
 |   EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _)) | 
 |       .Times(1) | 
 |       .WillRepeatedly(Return(LinearSolverTerminationType::FAILURE)); | 
 |   EXPECT_CALL(*mock_sparse_cholesky, Solve(_, _, _)).Times(0); | 
 |   EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _)).Times(0); | 
 |   std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky); | 
 |   std::unique_ptr<SparseIterativeRefiner> iterative_refiner( | 
 |       mock_iterative_refiner); | 
 |   RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky), | 
 |                                                 std::move(iterative_refiner)); | 
 |   CompressedRowSparseMatrix m(1, 1, 1); | 
 |   std::string message; | 
 |   double rhs; | 
 |   double solution; | 
 |   EXPECT_EQ( | 
 |       refined_sparse_cholesky.FactorAndSolve(&m, &rhs, &solution, &message), | 
 |       LinearSolverTerminationType::FAILURE); | 
 | }; | 
 |  | 
 | TEST(RefinedSparseCholesky, FactorAndSolveWithSuccess) { | 
 |   auto* mock_sparse_cholesky = new MockSparseCholesky; | 
 |   std::unique_ptr<MockSparseIterativeRefiner> mock_iterative_refiner( | 
 |       new MockSparseIterativeRefiner); | 
 |   EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _)) | 
 |       .Times(1) | 
 |       .WillRepeatedly(Return(LinearSolverTerminationType::SUCCESS)); | 
 |   EXPECT_CALL(*mock_sparse_cholesky, Solve(_, _, _)) | 
 |       .Times(1) | 
 |       .WillRepeatedly(Return(LinearSolverTerminationType::SUCCESS)); | 
 |   EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _)).Times(1); | 
 |  | 
 |   std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky); | 
 |   std::unique_ptr<SparseIterativeRefiner> iterative_refiner( | 
 |       std::move(mock_iterative_refiner)); | 
 |   RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky), | 
 |                                                 std::move(iterative_refiner)); | 
 |   CompressedRowSparseMatrix m(1, 1, 1); | 
 |   std::string message; | 
 |   double rhs; | 
 |   double solution; | 
 |   EXPECT_EQ( | 
 |       refined_sparse_cholesky.FactorAndSolve(&m, &rhs, &solution, &message), | 
 |       LinearSolverTerminationType::SUCCESS); | 
 | }; | 
 |  | 
 | }  // namespace | 
 |  | 
 | }  // namespace ceres::internal |