blob: 5a25e31812ef4f9e939d9864dcddc5c0e654fc92 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/compressed_col_sparse_matrix_utils.h"
#include <algorithm>
#include <vector>
#include "ceres/internal/export.h"
#include "glog/logging.h"
namespace ceres::internal {
void CompressedColumnScalarMatrixToBlockMatrix(
const int* scalar_rows,
const int* scalar_cols,
const std::vector<Block>& row_blocks,
const std::vector<Block>& col_blocks,
std::vector<int>* block_rows,
std::vector<int>* block_cols) {
CHECK(block_rows != nullptr);
CHECK(block_cols != nullptr);
block_rows->clear();
block_cols->clear();
const int num_col_blocks = col_blocks.size();
// This loop extracts the block sparsity of the scalar sparse matrix
// It does so by iterating over the columns, but only considering
// the columns corresponding to the first element of each column
// block. Within each column, the inner loop iterates over the rows,
// and detects the presence of a row block by checking for the
// presence of a non-zero entry corresponding to its first element.
block_cols->push_back(0);
int c = 0;
for (int col_block = 0; col_block < num_col_blocks; ++col_block) {
int column_size = 0;
for (int idx = scalar_cols[c]; idx < scalar_cols[c + 1]; ++idx) {
auto it = std::lower_bound(row_blocks.begin(),
row_blocks.end(),
scalar_rows[idx],
[](const Block& block, double value) {
return block.position < value;
});
// Since we are using lower_bound, it will return the row id where the row
// block starts. For everything but the first row of the block, where
// these values will be the same, we can skip, as we only need the first
// row to detect the presence of the block.
//
// For rows all but the first row in the last row block, lower_bound will
// return row_blocks_.end(), but those can be skipped like the rows in
// other row blocks too.
if (it == row_blocks.end() || it->position != scalar_rows[idx]) {
continue;
}
block_rows->push_back(it - row_blocks.begin());
++column_size;
}
block_cols->push_back(block_cols->back() + column_size);
c += col_blocks[col_block].size;
}
}
void BlockOrderingToScalarOrdering(const std::vector<Block>& blocks,
const std::vector<int>& block_ordering,
std::vector<int>* scalar_ordering) {
CHECK_EQ(blocks.size(), block_ordering.size());
const int num_blocks = blocks.size();
scalar_ordering->resize(NumScalarEntries(blocks));
int cursor = 0;
for (int i = 0; i < num_blocks; ++i) {
const int block_id = block_ordering[i];
const int block_size = blocks[block_id].size;
int block_position = blocks[block_id].position;
for (int j = 0; j < block_size; ++j) {
(*scalar_ordering)[cursor++] = block_position++;
}
}
}
} // namespace ceres::internal