| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2016 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/trust_region_minimizer.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstdlib> |
| #include <cstring> |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include "Eigen/Core" |
| #include "ceres/array_utils.h" |
| #include "ceres/coordinate_descent_minimizer.h" |
| #include "ceres/evaluator.h" |
| #include "ceres/file.h" |
| #include "ceres/line_search.h" |
| #include "ceres/stringprintf.h" |
| #include "ceres/types.h" |
| #include "ceres/wall_time.h" |
| #include "glog/logging.h" |
| |
| // Helper macro to simplify some of the control flow. |
| #define RETURN_IF_ERROR_AND_LOG(expr) \ |
| do { \ |
| if (!(expr)) { \ |
| LOG(ERROR) << "Terminating: " << solver_summary_->message; \ |
| return; \ |
| } \ |
| } while (0) |
| |
| namespace ceres { |
| namespace internal { |
| |
| void TrustRegionMinimizer::Minimize(const Minimizer::Options& options, |
| double* parameters, |
| Solver::Summary* solver_summary) { |
| start_time_in_secs_ = WallTimeInSeconds(); |
| iteration_start_time_in_secs_ = start_time_in_secs_; |
| Init(options, parameters, solver_summary); |
| RETURN_IF_ERROR_AND_LOG(IterationZero()); |
| |
| // Create the TrustRegionStepEvaluator. The construction needs to be |
| // delayed to this point because we need the cost for the starting |
| // point to initialize the step evaluator. |
| step_evaluator_ = std::make_unique<TrustRegionStepEvaluator>( |
| x_cost_, |
| options_.use_nonmonotonic_steps |
| ? options_.max_consecutive_nonmonotonic_steps |
| : 0); |
| |
| while (FinalizeIterationAndCheckIfMinimizerCanContinue()) { |
| iteration_start_time_in_secs_ = WallTimeInSeconds(); |
| |
| const double previous_gradient_norm = iteration_summary_.gradient_norm; |
| const double previous_gradient_max_norm = |
| iteration_summary_.gradient_max_norm; |
| |
| iteration_summary_ = IterationSummary(); |
| iteration_summary_.iteration = |
| solver_summary->iterations.back().iteration + 1; |
| |
| RETURN_IF_ERROR_AND_LOG(ComputeTrustRegionStep()); |
| if (!iteration_summary_.step_is_valid) { |
| RETURN_IF_ERROR_AND_LOG(HandleInvalidStep()); |
| continue; |
| } |
| |
| if (options_.is_constrained && |
| options_.max_num_line_search_step_size_iterations > 0) { |
| // Use a projected line search to enforce the bounds constraints |
| // and improve the quality of the step. |
| DoLineSearch(x_, gradient_, x_cost_, &delta_); |
| } |
| |
| ComputeCandidatePointAndEvaluateCost(); |
| DoInnerIterationsIfNeeded(); |
| |
| if (ParameterToleranceReached()) { |
| return; |
| } |
| |
| if (FunctionToleranceReached()) { |
| return; |
| } |
| |
| if (IsStepSuccessful()) { |
| RETURN_IF_ERROR_AND_LOG(HandleSuccessfulStep()); |
| } else { |
| // Declare the step unsuccessful and inform the trust region strategy. |
| iteration_summary_.step_is_successful = false; |
| iteration_summary_.cost = candidate_cost_ + solver_summary_->fixed_cost; |
| |
| // When the step is unsuccessful, we do not compute the gradient |
| // (or update x), so we preserve its value from the last |
| // successful iteration. |
| iteration_summary_.gradient_norm = previous_gradient_norm; |
| iteration_summary_.gradient_max_norm = previous_gradient_max_norm; |
| strategy_->StepRejected(iteration_summary_.relative_decrease); |
| } |
| } |
| } |
| |
| // Initialize the minimizer, allocate working space and set some of |
| // the fields in the solver_summary. |
| void TrustRegionMinimizer::Init(const Minimizer::Options& options, |
| double* parameters, |
| Solver::Summary* solver_summary) { |
| options_ = options; |
| sort(options_.trust_region_minimizer_iterations_to_dump.begin(), |
| options_.trust_region_minimizer_iterations_to_dump.end()); |
| |
| parameters_ = parameters; |
| |
| solver_summary_ = solver_summary; |
| solver_summary_->termination_type = NO_CONVERGENCE; |
| solver_summary_->num_successful_steps = 0; |
| solver_summary_->num_unsuccessful_steps = 0; |
| solver_summary_->is_constrained = options.is_constrained; |
| |
| CHECK(options_.evaluator != nullptr); |
| CHECK(options_.jacobian != nullptr); |
| CHECK(options_.trust_region_strategy != nullptr); |
| evaluator_ = options_.evaluator.get(); |
| jacobian_ = options_.jacobian.get(); |
| strategy_ = options_.trust_region_strategy.get(); |
| |
| is_not_silent_ = !options.is_silent; |
| inner_iterations_are_enabled_ = |
| options.inner_iteration_minimizer.get() != nullptr; |
| inner_iterations_were_useful_ = false; |
| |
| num_parameters_ = evaluator_->NumParameters(); |
| num_effective_parameters_ = evaluator_->NumEffectiveParameters(); |
| num_residuals_ = evaluator_->NumResiduals(); |
| num_consecutive_invalid_steps_ = 0; |
| |
| x_ = ConstVectorRef(parameters_, num_parameters_); |
| x_norm_ = x_.norm(); |
| residuals_.resize(num_residuals_); |
| trust_region_step_.resize(num_effective_parameters_); |
| delta_.resize(num_effective_parameters_); |
| candidate_x_.resize(num_parameters_); |
| gradient_.resize(num_effective_parameters_); |
| model_residuals_.resize(num_residuals_); |
| negative_gradient_.resize(num_effective_parameters_); |
| projected_gradient_step_.resize(num_parameters_); |
| |
| // By default scaling is one, if the user requests Jacobi scaling of |
| // the Jacobian, we will compute and overwrite this vector. |
| jacobian_scaling_ = Vector::Ones(num_effective_parameters_); |
| |
| x_norm_ = -1; // Invalid value |
| x_cost_ = std::numeric_limits<double>::max(); |
| minimum_cost_ = x_cost_; |
| model_cost_change_ = 0.0; |
| } |
| |
| // 1. Project the initial solution onto the feasible set if needed. |
| // 2. Compute the initial cost, jacobian & gradient. |
| // |
| // Return true if all computations can be performed successfully. |
| bool TrustRegionMinimizer::IterationZero() { |
| iteration_summary_ = IterationSummary(); |
| iteration_summary_.iteration = 0; |
| iteration_summary_.step_is_valid = false; |
| iteration_summary_.step_is_successful = false; |
| iteration_summary_.cost_change = 0.0; |
| iteration_summary_.gradient_max_norm = 0.0; |
| iteration_summary_.gradient_norm = 0.0; |
| iteration_summary_.step_norm = 0.0; |
| iteration_summary_.relative_decrease = 0.0; |
| iteration_summary_.eta = options_.eta; |
| iteration_summary_.linear_solver_iterations = 0; |
| iteration_summary_.step_solver_time_in_seconds = 0; |
| |
| if (options_.is_constrained) { |
| delta_.setZero(); |
| if (!evaluator_->Plus(x_.data(), delta_.data(), candidate_x_.data())) { |
| solver_summary_->message = |
| "Unable to project initial point onto the feasible set."; |
| solver_summary_->termination_type = FAILURE; |
| return false; |
| } |
| |
| x_ = candidate_x_; |
| x_norm_ = x_.norm(); |
| } |
| |
| if (!EvaluateGradientAndJacobian(/*new_evaluation_point=*/true)) { |
| return false; |
| } |
| |
| solver_summary_->initial_cost = x_cost_ + solver_summary_->fixed_cost; |
| iteration_summary_.step_is_valid = true; |
| iteration_summary_.step_is_successful = true; |
| return true; |
| } |
| |
| // For the current x_, compute |
| // |
| // 1. Cost |
| // 2. Jacobian |
| // 3. Gradient |
| // 4. Scale the Jacobian if needed (and compute the scaling if we are |
| // in iteration zero). |
| // 5. Compute the 2 and max norm of the gradient. |
| // |
| // Returns true if all computations could be performed |
| // successfully. Any failures are considered fatal and the |
| // Solver::Summary is updated to indicate this. |
| bool TrustRegionMinimizer::EvaluateGradientAndJacobian( |
| bool new_evaluation_point) { |
| Evaluator::EvaluateOptions evaluate_options; |
| evaluate_options.new_evaluation_point = new_evaluation_point; |
| if (!evaluator_->Evaluate(evaluate_options, |
| x_.data(), |
| &x_cost_, |
| residuals_.data(), |
| gradient_.data(), |
| jacobian_)) { |
| solver_summary_->message = "Residual and Jacobian evaluation failed."; |
| solver_summary_->termination_type = FAILURE; |
| return false; |
| } |
| |
| iteration_summary_.cost = x_cost_ + solver_summary_->fixed_cost; |
| |
| if (options_.jacobi_scaling) { |
| if (iteration_summary_.iteration == 0) { |
| // Compute a scaling vector that is used to improve the |
| // conditioning of the Jacobian. |
| // |
| // jacobian_scaling_ = diag(J'J)^{-1} |
| jacobian_->SquaredColumnNorm(jacobian_scaling_.data()); |
| for (int i = 0; i < jacobian_->num_cols(); ++i) { |
| // Add one to the denominator to prevent division by zero. |
| jacobian_scaling_[i] = 1.0 / (1.0 + sqrt(jacobian_scaling_[i])); |
| } |
| } |
| |
| // jacobian = jacobian * diag(J'J) ^{-1} |
| jacobian_->ScaleColumns(jacobian_scaling_.data()); |
| } |
| |
| // The gradient exists in the local tangent space. To account for |
| // the bounds constraints correctly, instead of just computing the |
| // norm of the gradient vector, we compute |
| // |
| // |Plus(x, -gradient) - x| |
| // |
| // Where the Plus operator lifts the negative gradient to the |
| // ambient space, adds it to x and projects it on the hypercube |
| // defined by the bounds. |
| negative_gradient_ = -gradient_; |
| if (!evaluator_->Plus(x_.data(), |
| negative_gradient_.data(), |
| projected_gradient_step_.data())) { |
| solver_summary_->message = |
| "projected_gradient_step = Plus(x, -gradient) failed."; |
| solver_summary_->termination_type = FAILURE; |
| return false; |
| } |
| |
| iteration_summary_.gradient_max_norm = |
| (x_ - projected_gradient_step_).lpNorm<Eigen::Infinity>(); |
| iteration_summary_.gradient_norm = (x_ - projected_gradient_step_).norm(); |
| return true; |
| } |
| |
| // 1. Add the final timing information to the iteration summary. |
| // 2. Run the callbacks |
| // 3. Check for termination based on |
| // a. Run time |
| // b. Iteration count |
| // c. Max norm of the gradient |
| // d. Size of the trust region radius. |
| // |
| // Returns true if user did not terminate the solver and none of these |
| // termination criterion are met. |
| bool TrustRegionMinimizer::FinalizeIterationAndCheckIfMinimizerCanContinue() { |
| if (iteration_summary_.step_is_successful) { |
| ++solver_summary_->num_successful_steps; |
| if (x_cost_ < minimum_cost_) { |
| minimum_cost_ = x_cost_; |
| VectorRef(parameters_, num_parameters_) = x_; |
| iteration_summary_.step_is_nonmonotonic = false; |
| } else { |
| iteration_summary_.step_is_nonmonotonic = true; |
| } |
| } else { |
| ++solver_summary_->num_unsuccessful_steps; |
| } |
| |
| iteration_summary_.trust_region_radius = strategy_->Radius(); |
| iteration_summary_.iteration_time_in_seconds = |
| WallTimeInSeconds() - iteration_start_time_in_secs_; |
| iteration_summary_.cumulative_time_in_seconds = |
| WallTimeInSeconds() - start_time_in_secs_ + |
| solver_summary_->preprocessor_time_in_seconds; |
| |
| solver_summary_->iterations.push_back(iteration_summary_); |
| |
| if (!RunCallbacks(options_, iteration_summary_, solver_summary_)) { |
| return false; |
| } |
| |
| if (MaxSolverTimeReached()) { |
| return false; |
| } |
| |
| if (MaxSolverIterationsReached()) { |
| return false; |
| } |
| |
| if (GradientToleranceReached()) { |
| return false; |
| } |
| |
| if (MinTrustRegionRadiusReached()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Compute the trust region step using the TrustRegionStrategy chosen |
| // by the user. |
| // |
| // If the strategy returns with LINEAR_SOLVER_FATAL_ERROR, which |
| // indicates an unrecoverable error, return false. This is the only |
| // condition that returns false. |
| // |
| // If the strategy returns with LINEAR_SOLVER_FAILURE, which indicates |
| // a numerical failure that could be recovered from by retrying |
| // (e.g. by increasing the strength of the regularization), we set |
| // iteration_summary_.step_is_valid to false and return true. |
| // |
| // In all other cases, we compute the decrease in the trust region |
| // model problem. In exact arithmetic, this should always be |
| // positive, but due to numerical problems in the TrustRegionStrategy |
| // or round off error when computing the decrease it may be |
| // negative. In which case again, we set |
| // iteration_summary_.step_is_valid to false. |
| bool TrustRegionMinimizer::ComputeTrustRegionStep() { |
| const double strategy_start_time = WallTimeInSeconds(); |
| iteration_summary_.step_is_valid = false; |
| TrustRegionStrategy::PerSolveOptions per_solve_options; |
| per_solve_options.eta = options_.eta; |
| if (find(options_.trust_region_minimizer_iterations_to_dump.begin(), |
| options_.trust_region_minimizer_iterations_to_dump.end(), |
| iteration_summary_.iteration) != |
| options_.trust_region_minimizer_iterations_to_dump.end()) { |
| per_solve_options.dump_format_type = |
| options_.trust_region_problem_dump_format_type; |
| per_solve_options.dump_filename_base = |
| JoinPath(options_.trust_region_problem_dump_directory, |
| StringPrintf("ceres_solver_iteration_%03d", |
| iteration_summary_.iteration)); |
| } |
| |
| TrustRegionStrategy::Summary strategy_summary = |
| strategy_->ComputeStep(per_solve_options, |
| jacobian_, |
| residuals_.data(), |
| trust_region_step_.data()); |
| |
| if (strategy_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) { |
| solver_summary_->message = |
| "Linear solver failed due to unrecoverable " |
| "non-numeric causes. Please see the error log for clues. "; |
| solver_summary_->termination_type = FAILURE; |
| return false; |
| } |
| |
| iteration_summary_.step_solver_time_in_seconds = |
| WallTimeInSeconds() - strategy_start_time; |
| iteration_summary_.linear_solver_iterations = strategy_summary.num_iterations; |
| |
| if (strategy_summary.termination_type == LINEAR_SOLVER_FAILURE) { |
| return true; |
| } |
| |
| // new_model_cost |
| // = 1/2 [f + J * step]^2 |
| // = 1/2 [ f'f + 2f'J * step + step' * J' * J * step ] |
| // model_cost_change |
| // = cost - new_model_cost |
| // = f'f/2 - 1/2 [ f'f + 2f'J * step + step' * J' * J * step] |
| // = -f'J * step - step' * J' * J * step / 2 |
| // = -(J * step)'(f + J * step / 2) |
| model_residuals_.setZero(); |
| jacobian_->RightMultiply(trust_region_step_.data(), model_residuals_.data()); |
| model_cost_change_ = |
| -model_residuals_.dot(residuals_ + model_residuals_ / 2.0); |
| |
| // TODO(sameeragarwal) |
| // |
| // 1. What happens if model_cost_change_ = 0 |
| // 2. What happens if -epsilon <= model_cost_change_ < 0 for some |
| // small epsilon due to round off error. |
| iteration_summary_.step_is_valid = (model_cost_change_ > 0.0); |
| if (iteration_summary_.step_is_valid) { |
| // Undo the Jacobian column scaling. |
| delta_ = (trust_region_step_.array() * jacobian_scaling_.array()).matrix(); |
| num_consecutive_invalid_steps_ = 0; |
| } |
| |
| if (is_not_silent_ && !iteration_summary_.step_is_valid) { |
| VLOG(1) << "Invalid step: current_cost: " << x_cost_ |
| << " absolute model cost change: " << model_cost_change_ |
| << " relative model cost change: " |
| << (model_cost_change_ / x_cost_); |
| } |
| return true; |
| } |
| |
| // Invalid steps can happen due to a number of reasons, and we allow a |
| // limited number of consecutive failures, and return false if this |
| // limit is exceeded. |
| bool TrustRegionMinimizer::HandleInvalidStep() { |
| // TODO(sameeragarwal): Should we be returning FAILURE or |
| // NO_CONVERGENCE? The solution value is still usable in many cases, |
| // it is not clear if we should declare the solver a failure |
| // entirely. For example the case where model_cost_change ~ 0.0, but |
| // just slightly negative. |
| if (++num_consecutive_invalid_steps_ >= |
| options_.max_num_consecutive_invalid_steps) { |
| solver_summary_->message = StringPrintf( |
| "Number of consecutive invalid steps more " |
| "than Solver::Options::max_num_consecutive_invalid_steps: %d", |
| options_.max_num_consecutive_invalid_steps); |
| solver_summary_->termination_type = FAILURE; |
| return false; |
| } |
| |
| strategy_->StepIsInvalid(); |
| |
| // We are going to try and reduce the trust region radius and |
| // solve again. To do this, we are going to treat this iteration |
| // as an unsuccessful iteration. Since the various callbacks are |
| // still executed, we are going to fill the iteration summary |
| // with data that assumes a step of length zero and no progress. |
| iteration_summary_.cost = x_cost_ + solver_summary_->fixed_cost; |
| iteration_summary_.cost_change = 0.0; |
| iteration_summary_.gradient_max_norm = |
| solver_summary_->iterations.back().gradient_max_norm; |
| iteration_summary_.gradient_norm = |
| solver_summary_->iterations.back().gradient_norm; |
| iteration_summary_.step_norm = 0.0; |
| iteration_summary_.relative_decrease = 0.0; |
| iteration_summary_.eta = options_.eta; |
| return true; |
| } |
| |
| // Use the supplied coordinate descent minimizer to perform inner |
| // iterations and compute the improvement due to it. Returns the cost |
| // after performing the inner iterations. |
| // |
| // The optimization is performed with candidate_x_ as the starting |
| // point, and if the optimization is successful, candidate_x_ will be |
| // updated with the optimized parameters. |
| void TrustRegionMinimizer::DoInnerIterationsIfNeeded() { |
| inner_iterations_were_useful_ = false; |
| if (!inner_iterations_are_enabled_ || |
| candidate_cost_ >= std::numeric_limits<double>::max()) { |
| return; |
| } |
| |
| double inner_iteration_start_time = WallTimeInSeconds(); |
| ++solver_summary_->num_inner_iteration_steps; |
| inner_iteration_x_ = candidate_x_; |
| Solver::Summary inner_iteration_summary; |
| options_.inner_iteration_minimizer->Minimize( |
| options_, inner_iteration_x_.data(), &inner_iteration_summary); |
| double inner_iteration_cost; |
| if (!evaluator_->Evaluate(inner_iteration_x_.data(), |
| &inner_iteration_cost, |
| nullptr, |
| nullptr, |
| nullptr)) { |
| if (is_not_silent_) { |
| VLOG(2) << "Inner iteration failed."; |
| } |
| return; |
| } |
| |
| if (is_not_silent_) { |
| VLOG(2) << "Inner iteration succeeded; Current cost: " << x_cost_ |
| << " Trust region step cost: " << candidate_cost_ |
| << " Inner iteration cost: " << inner_iteration_cost; |
| } |
| candidate_x_ = inner_iteration_x_; |
| |
| // Normally, the quality of a trust region step is measured by |
| // the ratio |
| // |
| // cost_change |
| // r = ----------------- |
| // model_cost_change |
| // |
| // All the change in the nonlinear objective is due to the trust |
| // region step so this ratio is a good measure of the quality of |
| // the trust region radius. However, when inner iterations are |
| // being used, cost_change includes the contribution of the |
| // inner iterations and its not fair to credit it all to the |
| // trust region algorithm. So we change the ratio to be |
| // |
| // cost_change |
| // r = ------------------------------------------------ |
| // (model_cost_change + inner_iteration_cost_change) |
| // |
| // Practically we do this by increasing model_cost_change by |
| // inner_iteration_cost_change. |
| |
| const double inner_iteration_cost_change = |
| candidate_cost_ - inner_iteration_cost; |
| model_cost_change_ += inner_iteration_cost_change; |
| inner_iterations_were_useful_ = inner_iteration_cost < x_cost_; |
| const double inner_iteration_relative_progress = |
| 1.0 - inner_iteration_cost / candidate_cost_; |
| |
| // Disable inner iterations once the relative improvement |
| // drops below tolerance. |
| inner_iterations_are_enabled_ = |
| (inner_iteration_relative_progress > options_.inner_iteration_tolerance); |
| if (is_not_silent_ && !inner_iterations_are_enabled_) { |
| VLOG(2) << "Disabling inner iterations. Progress : " |
| << inner_iteration_relative_progress; |
| } |
| candidate_cost_ = inner_iteration_cost; |
| |
| solver_summary_->inner_iteration_time_in_seconds += |
| WallTimeInSeconds() - inner_iteration_start_time; |
| } |
| |
| // Perform a projected line search to improve the objective function |
| // value along delta. |
| // |
| // TODO(sameeragarwal): The current implementation does not do |
| // anything illegal but is incorrect and not terribly effective. |
| // |
| // https://github.com/ceres-solver/ceres-solver/issues/187 |
| void TrustRegionMinimizer::DoLineSearch(const Vector& x, |
| const Vector& gradient, |
| const double cost, |
| Vector* delta) { |
| LineSearchFunction line_search_function(evaluator_); |
| |
| LineSearch::Options line_search_options; |
| line_search_options.is_silent = true; |
| line_search_options.interpolation_type = |
| options_.line_search_interpolation_type; |
| line_search_options.min_step_size = options_.min_line_search_step_size; |
| line_search_options.sufficient_decrease = |
| options_.line_search_sufficient_function_decrease; |
| line_search_options.max_step_contraction = |
| options_.max_line_search_step_contraction; |
| line_search_options.min_step_contraction = |
| options_.min_line_search_step_contraction; |
| line_search_options.max_num_iterations = |
| options_.max_num_line_search_step_size_iterations; |
| line_search_options.sufficient_curvature_decrease = |
| options_.line_search_sufficient_curvature_decrease; |
| line_search_options.max_step_expansion = |
| options_.max_line_search_step_expansion; |
| line_search_options.function = &line_search_function; |
| |
| std::string message; |
| std::unique_ptr<LineSearch> line_search( |
| LineSearch::Create(ceres::ARMIJO, line_search_options, &message)); |
| LineSearch::Summary line_search_summary; |
| line_search_function.Init(x, *delta); |
| line_search->Search(1.0, cost, gradient.dot(*delta), &line_search_summary); |
| |
| solver_summary_->num_line_search_steps += line_search_summary.num_iterations; |
| solver_summary_->line_search_cost_evaluation_time_in_seconds += |
| line_search_summary.cost_evaluation_time_in_seconds; |
| solver_summary_->line_search_gradient_evaluation_time_in_seconds += |
| line_search_summary.gradient_evaluation_time_in_seconds; |
| solver_summary_->line_search_polynomial_minimization_time_in_seconds += |
| line_search_summary.polynomial_minimization_time_in_seconds; |
| solver_summary_->line_search_total_time_in_seconds += |
| line_search_summary.total_time_in_seconds; |
| |
| if (line_search_summary.success) { |
| *delta *= line_search_summary.optimal_point.x; |
| } |
| } |
| |
| // Check if the maximum amount of time allowed by the user for the |
| // solver has been exceeded, and if so return false after updating |
| // Solver::Summary::message. |
| bool TrustRegionMinimizer::MaxSolverTimeReached() { |
| const double total_solver_time = |
| WallTimeInSeconds() - start_time_in_secs_ + |
| solver_summary_->preprocessor_time_in_seconds; |
| if (total_solver_time < options_.max_solver_time_in_seconds) { |
| return false; |
| } |
| |
| solver_summary_->message = StringPrintf( |
| "Maximum solver time reached. " |
| "Total solver time: %e >= %e.", |
| total_solver_time, |
| options_.max_solver_time_in_seconds); |
| solver_summary_->termination_type = NO_CONVERGENCE; |
| if (is_not_silent_) { |
| VLOG(1) << "Terminating: " << solver_summary_->message; |
| } |
| return true; |
| } |
| |
| // Check if the maximum number of iterations allowed by the user for |
| // the solver has been exceeded, and if so return false after updating |
| // Solver::Summary::message. |
| bool TrustRegionMinimizer::MaxSolverIterationsReached() { |
| if (iteration_summary_.iteration < options_.max_num_iterations) { |
| return false; |
| } |
| |
| solver_summary_->message = StringPrintf( |
| "Maximum number of iterations reached. " |
| "Number of iterations: %d.", |
| iteration_summary_.iteration); |
| |
| solver_summary_->termination_type = NO_CONVERGENCE; |
| if (is_not_silent_) { |
| VLOG(1) << "Terminating: " << solver_summary_->message; |
| } |
| return true; |
| } |
| |
| // Check convergence based on the max norm of the gradient (only for |
| // iterations where the step was declared successful). |
| bool TrustRegionMinimizer::GradientToleranceReached() { |
| if (!iteration_summary_.step_is_successful || |
| iteration_summary_.gradient_max_norm > options_.gradient_tolerance) { |
| return false; |
| } |
| |
| solver_summary_->message = StringPrintf( |
| "Gradient tolerance reached. " |
| "Gradient max norm: %e <= %e", |
| iteration_summary_.gradient_max_norm, |
| options_.gradient_tolerance); |
| solver_summary_->termination_type = CONVERGENCE; |
| if (is_not_silent_) { |
| VLOG(1) << "Terminating: " << solver_summary_->message; |
| } |
| return true; |
| } |
| |
| // Check convergence based the size of the trust region radius. |
| bool TrustRegionMinimizer::MinTrustRegionRadiusReached() { |
| if (iteration_summary_.trust_region_radius > |
| options_.min_trust_region_radius) { |
| return false; |
| } |
| |
| solver_summary_->message = StringPrintf( |
| "Minimum trust region radius reached. " |
| "Trust region radius: %e <= %e", |
| iteration_summary_.trust_region_radius, |
| options_.min_trust_region_radius); |
| solver_summary_->termination_type = CONVERGENCE; |
| if (is_not_silent_) { |
| VLOG(1) << "Terminating: " << solver_summary_->message; |
| } |
| return true; |
| } |
| |
| // Solver::Options::parameter_tolerance based convergence check. |
| bool TrustRegionMinimizer::ParameterToleranceReached() { |
| // Compute the norm of the step in the ambient space. |
| iteration_summary_.step_norm = (x_ - candidate_x_).norm(); |
| const double step_size_tolerance = |
| options_.parameter_tolerance * (x_norm_ + options_.parameter_tolerance); |
| |
| if (iteration_summary_.step_norm > step_size_tolerance) { |
| return false; |
| } |
| |
| solver_summary_->message = StringPrintf( |
| "Parameter tolerance reached. " |
| "Relative step_norm: %e <= %e.", |
| (iteration_summary_.step_norm / (x_norm_ + options_.parameter_tolerance)), |
| options_.parameter_tolerance); |
| solver_summary_->termination_type = CONVERGENCE; |
| if (is_not_silent_) { |
| VLOG(1) << "Terminating: " << solver_summary_->message; |
| } |
| return true; |
| } |
| |
| // Solver::Options::function_tolerance based convergence check. |
| bool TrustRegionMinimizer::FunctionToleranceReached() { |
| iteration_summary_.cost_change = x_cost_ - candidate_cost_; |
| const double absolute_function_tolerance = |
| options_.function_tolerance * x_cost_; |
| |
| if (fabs(iteration_summary_.cost_change) > absolute_function_tolerance) { |
| return false; |
| } |
| |
| solver_summary_->message = StringPrintf( |
| "Function tolerance reached. " |
| "|cost_change|/cost: %e <= %e", |
| fabs(iteration_summary_.cost_change) / x_cost_, |
| options_.function_tolerance); |
| solver_summary_->termination_type = CONVERGENCE; |
| if (is_not_silent_) { |
| VLOG(1) << "Terminating: " << solver_summary_->message; |
| } |
| return true; |
| } |
| |
| // Compute candidate_x_ = Plus(x_, delta_) |
| // Evaluate the cost of candidate_x_ as candidate_cost_. |
| // |
| // Failure to compute the step or the cost mean that candidate_cost_ is set to |
| // std::numeric_limits<double>::max(). Unlike EvaluateGradientAndJacobian, |
| // failure in this function is not fatal as we are only computing and evaluating |
| // a candidate point, and if for some reason we are unable to evaluate it, we |
| // consider it to be a point with very high cost. This allows the user to deal |
| // with edge cases/constraints as part of the Manifold and CostFunction objects. |
| void TrustRegionMinimizer::ComputeCandidatePointAndEvaluateCost() { |
| if (!evaluator_->Plus(x_.data(), delta_.data(), candidate_x_.data())) { |
| if (is_not_silent_) { |
| LOG(WARNING) << "x_plus_delta = Plus(x, delta) failed. " |
| << "Treating it as a step with infinite cost"; |
| } |
| candidate_cost_ = std::numeric_limits<double>::max(); |
| return; |
| } |
| |
| if (!evaluator_->Evaluate( |
| candidate_x_.data(), &candidate_cost_, nullptr, nullptr, nullptr)) { |
| if (is_not_silent_) { |
| LOG(WARNING) << "Step failed to evaluate. " |
| << "Treating it as a step with infinite cost"; |
| } |
| candidate_cost_ = std::numeric_limits<double>::max(); |
| } |
| } |
| |
| bool TrustRegionMinimizer::IsStepSuccessful() { |
| iteration_summary_.relative_decrease = |
| step_evaluator_->StepQuality(candidate_cost_, model_cost_change_); |
| |
| // In most cases, boosting the model_cost_change by the |
| // improvement caused by the inner iterations is fine, but it can |
| // be the case that the original trust region step was so bad that |
| // the resulting improvement in the cost was negative, and the |
| // change caused by the inner iterations was large enough to |
| // improve the step, but also to make relative decrease quite |
| // small. |
| // |
| // This can cause the trust region loop to reject this step. To |
| // get around this, we explicitly check if the inner iterations |
| // led to a net decrease in the objective function value. If |
| // they did, we accept the step even if the trust region ratio |
| // is small. |
| // |
| // Notice that we do not just check that cost_change is positive |
| // which is a weaker condition and would render the |
| // min_relative_decrease threshold useless. Instead, we keep |
| // track of inner_iterations_were_useful, which is true only |
| // when inner iterations lead to a net decrease in the cost. |
| return (inner_iterations_were_useful_ || |
| iteration_summary_.relative_decrease > |
| options_.min_relative_decrease); |
| } |
| |
| // Declare the step successful, move to candidate_x, update the |
| // derivatives and let the trust region strategy and the step |
| // evaluator know that the step has been accepted. |
| bool TrustRegionMinimizer::HandleSuccessfulStep() { |
| x_ = candidate_x_; |
| x_norm_ = x_.norm(); |
| |
| // Since the step was successful, this point has already had the residual |
| // evaluated (but not the jacobian). So indicate that to the evaluator. |
| if (!EvaluateGradientAndJacobian(/*new_evaluation_point=*/false)) { |
| return false; |
| } |
| |
| iteration_summary_.step_is_successful = true; |
| strategy_->StepAccepted(iteration_summary_.relative_decrease); |
| step_evaluator_->StepAccepted(candidate_cost_, model_cost_change_); |
| return true; |
| } |
| |
| } // namespace internal |
| } // namespace ceres |