| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include <algorithm> | 
 | #include "ceres/compressed_col_sparse_matrix_utils.h" | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/suitesparse.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::vector; | 
 |  | 
 | TEST(_, BlockPermutationToScalarPermutation) { | 
 |   vector<int> blocks; | 
 |   //  Block structure | 
 |   //  0  --1-  ---2---  ---3---  4 | 
 |   // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | 
 |   blocks.push_back(1); | 
 |   blocks.push_back(2); | 
 |   blocks.push_back(3); | 
 |   blocks.push_back(3); | 
 |   blocks.push_back(1); | 
 |  | 
 |   // Block ordering | 
 |   // [1, 0, 2, 4, 5] | 
 |   vector<int> block_ordering; | 
 |   block_ordering.push_back(1); | 
 |   block_ordering.push_back(0); | 
 |   block_ordering.push_back(2); | 
 |   block_ordering.push_back(4); | 
 |   block_ordering.push_back(3); | 
 |  | 
 |   // Expected ordering | 
 |   // [1, 2, 0, 3, 4, 5, 9, 6, 7, 8] | 
 |   vector<int> expected_scalar_ordering; | 
 |   expected_scalar_ordering.push_back(1); | 
 |   expected_scalar_ordering.push_back(2); | 
 |   expected_scalar_ordering.push_back(0); | 
 |   expected_scalar_ordering.push_back(3); | 
 |   expected_scalar_ordering.push_back(4); | 
 |   expected_scalar_ordering.push_back(5); | 
 |   expected_scalar_ordering.push_back(9); | 
 |   expected_scalar_ordering.push_back(6); | 
 |   expected_scalar_ordering.push_back(7); | 
 |   expected_scalar_ordering.push_back(8); | 
 |  | 
 |   vector<int> scalar_ordering; | 
 |   BlockOrderingToScalarOrdering(blocks, | 
 |                                 block_ordering, | 
 |                                 &scalar_ordering); | 
 |   EXPECT_EQ(scalar_ordering.size(), expected_scalar_ordering.size()); | 
 |   for (int i = 0; i < expected_scalar_ordering.size(); ++i) { | 
 |     EXPECT_EQ(scalar_ordering[i], expected_scalar_ordering[i]); | 
 |   } | 
 | } | 
 |  | 
 | // Helper function to fill the sparsity pattern of a TripletSparseMatrix. | 
 | int FillBlock(const vector<int>& row_blocks, | 
 |               const vector<int>& col_blocks, | 
 |               const int row_block_id, | 
 |               const int col_block_id, | 
 |               int* rows, | 
 |               int* cols) { | 
 |   int row_pos = 0; | 
 |   for (int i = 0; i < row_block_id; ++i) { | 
 |     row_pos += row_blocks[i]; | 
 |   } | 
 |  | 
 |   int col_pos = 0; | 
 |   for (int i = 0; i < col_block_id; ++i) { | 
 |     col_pos += col_blocks[i]; | 
 |   } | 
 |  | 
 |   int offset = 0; | 
 |   for (int r = 0; r < row_blocks[row_block_id]; ++r) { | 
 |     for (int c = 0; c < col_blocks[col_block_id]; ++c, ++offset) { | 
 |       rows[offset] = row_pos + r; | 
 |       cols[offset] = col_pos + c; | 
 |     } | 
 |   } | 
 |   return offset; | 
 | } | 
 |  | 
 | TEST(_, ScalarMatrixToBlockMatrix) { | 
 |   // Block sparsity. | 
 |   // | 
 |   //     [1 2 3 2] | 
 |   // [1]  x   x | 
 |   // [2]    x   x | 
 |   // [2]  x x | 
 |   // num_nonzeros = 1 + 3 + 4 + 4 + 1 + 2 = 15 | 
 |  | 
 |   vector<int> col_blocks; | 
 |   col_blocks.push_back(1); | 
 |   col_blocks.push_back(2); | 
 |   col_blocks.push_back(3); | 
 |   col_blocks.push_back(2); | 
 |  | 
 |   vector<int> row_blocks; | 
 |   row_blocks.push_back(1); | 
 |   row_blocks.push_back(2); | 
 |   row_blocks.push_back(2); | 
 |  | 
 |   TripletSparseMatrix tsm(5, 8, 18); | 
 |   int* rows = tsm.mutable_rows(); | 
 |   int* cols = tsm.mutable_cols(); | 
 |   std::fill(tsm.mutable_values(), tsm.mutable_values() + 18, 1.0); | 
 |   int offset = 0; | 
 |  | 
 | #define CERES_TEST_FILL_BLOCK(row_block_id, col_block_id) \ | 
 |   offset += FillBlock(row_blocks, col_blocks, \ | 
 |                       row_block_id, col_block_id, \ | 
 |                       rows + offset, cols + offset); | 
 |  | 
 |   CERES_TEST_FILL_BLOCK(0, 0); | 
 |   CERES_TEST_FILL_BLOCK(2, 0); | 
 |   CERES_TEST_FILL_BLOCK(1, 1); | 
 |   CERES_TEST_FILL_BLOCK(2, 1); | 
 |   CERES_TEST_FILL_BLOCK(0, 2); | 
 |   CERES_TEST_FILL_BLOCK(1, 3); | 
 | #undef CERES_TEST_FILL_BLOCK | 
 |  | 
 |   tsm.set_num_nonzeros(offset); | 
 |  | 
 |   SuiteSparse ss; | 
 |   scoped_ptr<cholmod_sparse> ccsm(ss.CreateSparseMatrix(&tsm)); | 
 |  | 
 |   vector<int> expected_block_rows; | 
 |   expected_block_rows.push_back(0); | 
 |   expected_block_rows.push_back(2); | 
 |   expected_block_rows.push_back(1); | 
 |   expected_block_rows.push_back(2); | 
 |   expected_block_rows.push_back(0); | 
 |   expected_block_rows.push_back(1); | 
 |  | 
 |   vector<int> expected_block_cols; | 
 |   expected_block_cols.push_back(0); | 
 |   expected_block_cols.push_back(2); | 
 |   expected_block_cols.push_back(4); | 
 |   expected_block_cols.push_back(5); | 
 |   expected_block_cols.push_back(6); | 
 |  | 
 |   vector<int> block_rows; | 
 |   vector<int> block_cols; | 
 |   CompressedColumnScalarMatrixToBlockMatrix( | 
 |       reinterpret_cast<const int*>(ccsm->i), | 
 |       reinterpret_cast<const int*>(ccsm->p), | 
 |       row_blocks, | 
 |       col_blocks, | 
 |       &block_rows, | 
 |       &block_cols); | 
 |  | 
 |   EXPECT_EQ(block_cols.size(), expected_block_cols.size()); | 
 |   EXPECT_EQ(block_rows.size(), expected_block_rows.size()); | 
 |  | 
 |   for (int i = 0; i < expected_block_cols.size(); ++i) { | 
 |     EXPECT_EQ(block_cols[i], expected_block_cols[i]); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < expected_block_rows.size(); ++i) { | 
 |     EXPECT_EQ(block_rows[i], expected_block_rows[i]); | 
 |   } | 
 |  | 
 |   ss.Free(ccsm.release()); | 
 | } | 
 |  | 
 | class SolveUpperTriangularTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUp() { | 
 |     cols.resize(5); | 
 |     rows.resize(7); | 
 |     values.resize(7); | 
 |  | 
 |     cols[0] = 0; | 
 |     rows[0] = 0; | 
 |     values[0] = 0.50754; | 
 |  | 
 |     cols[1] = 1; | 
 |     rows[1] = 1; | 
 |     values[1] = 0.80483; | 
 |  | 
 |     cols[2] = 2; | 
 |     rows[2] = 1; | 
 |     values[2] = 0.14120; | 
 |     rows[3] = 2; | 
 |     values[3] = 0.3; | 
 |  | 
 |     cols[3] = 4; | 
 |     rows[4] = 0; | 
 |     values[4] = 0.77696; | 
 |     rows[5] = 1; | 
 |     values[5] = 0.41860; | 
 |     rows[6] = 3; | 
 |     values[6] = 0.88979; | 
 |  | 
 |     cols[4] = 7; | 
 |   } | 
 |  | 
 |   vector<int> cols; | 
 |   vector<int> rows; | 
 |   vector<double> values; | 
 | }; | 
 |  | 
 | TEST_F(SolveUpperTriangularTest, SolveInPlace) { | 
 |   double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
 |   const double expected[] = { -1.4706, -1.0962, 6.6667, 2.2477}; | 
 |  | 
 |   SolveUpperTriangularInPlace<int>(cols.size() - 1, | 
 |                                    &rows[0], | 
 |                                    &cols[0], | 
 |                                    &values[0], | 
 |                                    rhs_and_solution); | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(SolveUpperTriangularTest, TransposeSolveInPlace) { | 
 |   double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
 |   double expected[] = {1.970288,  1.242498,  6.081864, -0.057255}; | 
 |  | 
 |   SolveUpperTriangularTransposeInPlace<int>(cols.size() - 1, | 
 |                                             &rows[0], | 
 |                                             &cols[0], | 
 |                                             &values[0], | 
 |                                             rhs_and_solution); | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(SolveUpperTriangularTest, RTRSolveWithSparseRHS) { | 
 |   double solution[4]; | 
 |   double expected[] = { 6.8420e+00,   1.0057e+00,  -1.4907e-16,  -1.9335e+00, | 
 |                         1.0057e+00,   2.2275e+00,  -1.9493e+00,  -6.5693e-01, | 
 |                        -1.4907e-16,  -1.9493e+00,   1.1111e+01,   9.7381e-17, | 
 |                        -1.9335e+00,  -6.5693e-01,   9.7381e-17,   1.2631e+00 }; | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     SolveRTRWithSparseRHS<int>(cols.size() - 1, | 
 |                                &rows[0], | 
 |                                &cols[0], | 
 |                                &values[0], | 
 |                                i, | 
 |                                solution); | 
 |     for (int j = 0; j < 4; ++j) { | 
 |       EXPECT_NEAR(solution[j], expected[4 * i + j], 1e-3) << i; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |