|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Generic loop for line search based optimization algorithms. | 
|  | // | 
|  | // This is primarily inpsired by the minFunc packaged written by Mark | 
|  | // Schmidt. | 
|  | // | 
|  | // http://www.di.ens.fr/~mschmidt/Software/minFunc.html | 
|  | // | 
|  | // For details on the theory and implementation see "Numerical | 
|  | // Optimization" by Nocedal & Wright. | 
|  |  | 
|  | #include "ceres/line_search_minimizer.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstdlib> | 
|  | #include <cmath> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/array_utils.h" | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/line_search.h" | 
|  | #include "ceres/line_search_direction.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/wall_time.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  |  | 
|  | // TODO(sameeragarwal): I think there is a small bug here, in that if | 
|  | // the evaluation fails, then the state can contain garbage. Look at | 
|  | // this more carefully. | 
|  | bool Evaluate(Evaluator* evaluator, | 
|  | const Vector& x, | 
|  | LineSearchMinimizer::State* state, | 
|  | std::string* message) { | 
|  | if (!evaluator->Evaluate(x.data(), | 
|  | &(state->cost), | 
|  | NULL, | 
|  | state->gradient.data(), | 
|  | NULL)) { | 
|  | *message = "Gradient evaluation failed."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Vector negative_gradient = -state->gradient; | 
|  | Vector projected_gradient_step(x.size()); | 
|  | if (!evaluator->Plus(x.data(), | 
|  | negative_gradient.data(), | 
|  | projected_gradient_step.data())) { | 
|  | *message = "projected_gradient_step = Plus(x, -gradient) failed."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | state->gradient_squared_norm = (x - projected_gradient_step).squaredNorm(); | 
|  | state->gradient_max_norm = | 
|  | (x - projected_gradient_step).lpNorm<Eigen::Infinity>(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void LineSearchMinimizer::Minimize(const Minimizer::Options& options, | 
|  | double* parameters, | 
|  | Solver::Summary* summary) { | 
|  | const bool is_not_silent = !options.is_silent; | 
|  | double start_time = WallTimeInSeconds(); | 
|  | double iteration_start_time =  start_time; | 
|  |  | 
|  | Evaluator* evaluator = CHECK_NOTNULL(options.evaluator.get()); | 
|  | const int num_parameters = evaluator->NumParameters(); | 
|  | const int num_effective_parameters = evaluator->NumEffectiveParameters(); | 
|  |  | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | summary->num_successful_steps = 0; | 
|  | summary->num_unsuccessful_steps = 0; | 
|  |  | 
|  | VectorRef x(parameters, num_parameters); | 
|  |  | 
|  | State current_state(num_parameters, num_effective_parameters); | 
|  | State previous_state(num_parameters, num_effective_parameters); | 
|  |  | 
|  | Vector delta(num_effective_parameters); | 
|  | Vector x_plus_delta(num_parameters); | 
|  |  | 
|  | IterationSummary iteration_summary; | 
|  | iteration_summary.iteration = 0; | 
|  | iteration_summary.step_is_valid = false; | 
|  | iteration_summary.step_is_successful = false; | 
|  | iteration_summary.cost_change = 0.0; | 
|  | iteration_summary.gradient_max_norm = 0.0; | 
|  | iteration_summary.gradient_norm = 0.0; | 
|  | iteration_summary.step_norm = 0.0; | 
|  | iteration_summary.linear_solver_iterations = 0; | 
|  | iteration_summary.step_solver_time_in_seconds = 0; | 
|  |  | 
|  | // Do initial cost and Jacobian evaluation. | 
|  | if (!Evaluate(evaluator, x, ¤t_state, &summary->message)) { | 
|  | summary->termination_type = FAILURE; | 
|  | summary->message = "Initial cost and jacobian evaluation failed. " | 
|  | "More details: " + summary->message; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | summary->initial_cost = current_state.cost + summary->fixed_cost; | 
|  | iteration_summary.cost = current_state.cost + summary->fixed_cost; | 
|  |  | 
|  | iteration_summary.gradient_max_norm = current_state.gradient_max_norm; | 
|  | iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm); | 
|  |  | 
|  | if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) { | 
|  | summary->message = StringPrintf("Gradient tolerance reached. " | 
|  | "Gradient max norm: %e <= %e", | 
|  | iteration_summary.gradient_max_norm, | 
|  | options.gradient_tolerance); | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time | 
|  | + summary->preprocessor_time_in_seconds; | 
|  | summary->iterations.push_back(iteration_summary); | 
|  |  | 
|  | LineSearchDirection::Options line_search_direction_options; | 
|  | line_search_direction_options.num_parameters = num_effective_parameters; | 
|  | line_search_direction_options.type = options.line_search_direction_type; | 
|  | line_search_direction_options.nonlinear_conjugate_gradient_type = | 
|  | options.nonlinear_conjugate_gradient_type; | 
|  | line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank; | 
|  | line_search_direction_options.use_approximate_eigenvalue_bfgs_scaling = | 
|  | options.use_approximate_eigenvalue_bfgs_scaling; | 
|  | scoped_ptr<LineSearchDirection> line_search_direction( | 
|  | LineSearchDirection::Create(line_search_direction_options)); | 
|  |  | 
|  | LineSearchFunction line_search_function(evaluator); | 
|  |  | 
|  | LineSearch::Options line_search_options; | 
|  | line_search_options.interpolation_type = | 
|  | options.line_search_interpolation_type; | 
|  | line_search_options.min_step_size = options.min_line_search_step_size; | 
|  | line_search_options.sufficient_decrease = | 
|  | options.line_search_sufficient_function_decrease; | 
|  | line_search_options.max_step_contraction = | 
|  | options.max_line_search_step_contraction; | 
|  | line_search_options.min_step_contraction = | 
|  | options.min_line_search_step_contraction; | 
|  | line_search_options.max_num_iterations = | 
|  | options.max_num_line_search_step_size_iterations; | 
|  | line_search_options.sufficient_curvature_decrease = | 
|  | options.line_search_sufficient_curvature_decrease; | 
|  | line_search_options.max_step_expansion = | 
|  | options.max_line_search_step_expansion; | 
|  | line_search_options.is_silent = options.is_silent; | 
|  | line_search_options.function = &line_search_function; | 
|  |  | 
|  | scoped_ptr<LineSearch> | 
|  | line_search(LineSearch::Create(options.line_search_type, | 
|  | line_search_options, | 
|  | &summary->message)); | 
|  | if (line_search.get() == NULL) { | 
|  | summary->termination_type = FAILURE; | 
|  | LOG_IF(ERROR, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | LineSearch::Summary line_search_summary; | 
|  | int num_line_search_direction_restarts = 0; | 
|  |  | 
|  | while (true) { | 
|  | if (!RunCallbacks(options, iteration_summary, summary)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | iteration_start_time = WallTimeInSeconds(); | 
|  | if (iteration_summary.iteration >= options.max_num_iterations) { | 
|  | summary->message = "Maximum number of iterations reached."; | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const double total_solver_time = iteration_start_time - start_time + | 
|  | summary->preprocessor_time_in_seconds; | 
|  | if (total_solver_time >= options.max_solver_time_in_seconds) { | 
|  | summary->message = "Maximum solver time reached."; | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | break; | 
|  | } | 
|  |  | 
|  | iteration_summary = IterationSummary(); | 
|  | iteration_summary.iteration = summary->iterations.back().iteration + 1; | 
|  | iteration_summary.step_is_valid = false; | 
|  | iteration_summary.step_is_successful = false; | 
|  |  | 
|  | bool line_search_status = true; | 
|  | if (iteration_summary.iteration == 1) { | 
|  | current_state.search_direction = -current_state.gradient; | 
|  | } else { | 
|  | line_search_status = line_search_direction->NextDirection( | 
|  | previous_state, | 
|  | current_state, | 
|  | ¤t_state.search_direction); | 
|  | } | 
|  |  | 
|  | if (!line_search_status && | 
|  | num_line_search_direction_restarts >= | 
|  | options.max_num_line_search_direction_restarts) { | 
|  | // Line search direction failed to generate a new direction, and we | 
|  | // have already reached our specified maximum number of restarts, | 
|  | // terminate optimization. | 
|  | summary->message = | 
|  | StringPrintf("Line search direction failure: specified " | 
|  | "max_num_line_search_direction_restarts: %d reached.", | 
|  | options.max_num_line_search_direction_restarts); | 
|  | summary->termination_type = FAILURE; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | break; | 
|  | } else if (!line_search_status) { | 
|  | // Restart line search direction with gradient descent on first iteration | 
|  | // as we have not yet reached our maximum number of restarts. | 
|  | CHECK_LT(num_line_search_direction_restarts, | 
|  | options.max_num_line_search_direction_restarts); | 
|  |  | 
|  | ++num_line_search_direction_restarts; | 
|  | LOG_IF(WARNING, is_not_silent) | 
|  | << "Line search direction algorithm: " | 
|  | << LineSearchDirectionTypeToString( | 
|  | options.line_search_direction_type) | 
|  | << ", failed to produce a valid new direction at " | 
|  | << "iteration: " << iteration_summary.iteration | 
|  | << ". Restarting, number of restarts: " | 
|  | << num_line_search_direction_restarts << " / " | 
|  | << options.max_num_line_search_direction_restarts | 
|  | << " [max]."; | 
|  | line_search_direction.reset( | 
|  | LineSearchDirection::Create(line_search_direction_options)); | 
|  | current_state.search_direction = -current_state.gradient; | 
|  | } | 
|  |  | 
|  | line_search_function.Init(x, current_state.search_direction); | 
|  | current_state.directional_derivative = | 
|  | current_state.gradient.dot(current_state.search_direction); | 
|  |  | 
|  | // TODO(sameeragarwal): Refactor this into its own object and add | 
|  | // explanations for the various choices. | 
|  | // | 
|  | // Note that we use !line_search_status to ensure that we treat cases when | 
|  | // we restarted the line search direction equivalently to the first | 
|  | // iteration. | 
|  | const double initial_step_size = | 
|  | (iteration_summary.iteration == 1 || !line_search_status) | 
|  | ? std::min(1.0, 1.0 / current_state.gradient_max_norm) | 
|  | : std::min(1.0, 2.0 * (current_state.cost - previous_state.cost) / | 
|  | current_state.directional_derivative); | 
|  | // By definition, we should only ever go forwards along the specified search | 
|  | // direction in a line search, most likely cause for this being violated | 
|  | // would be a numerical failure in the line search direction calculation. | 
|  | if (initial_step_size < 0.0) { | 
|  | summary->message = | 
|  | StringPrintf("Numerical failure in line search, initial_step_size is " | 
|  | "negative: %.5e, directional_derivative: %.5e, " | 
|  | "(current_cost - previous_cost): %.5e", | 
|  | initial_step_size, current_state.directional_derivative, | 
|  | (current_state.cost - previous_state.cost)); | 
|  | summary->termination_type = FAILURE; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | break; | 
|  | } | 
|  |  | 
|  | line_search->Search(initial_step_size, | 
|  | current_state.cost, | 
|  | current_state.directional_derivative, | 
|  | &line_search_summary); | 
|  | if (!line_search_summary.success) { | 
|  | summary->message = | 
|  | StringPrintf("Numerical failure in line search, failed to find " | 
|  | "a valid step size, (did not run out of iterations) " | 
|  | "using initial_step_size: %.5e, initial_cost: %.5e, " | 
|  | "initial_gradient: %.5e.", | 
|  | initial_step_size, current_state.cost, | 
|  | current_state.directional_derivative); | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | summary->termination_type = FAILURE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | current_state.step_size = line_search_summary.optimal_step_size; | 
|  | delta = current_state.step_size * current_state.search_direction; | 
|  |  | 
|  | previous_state = current_state; | 
|  | iteration_summary.step_solver_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  |  | 
|  | const double x_norm = x.norm(); | 
|  |  | 
|  | if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) { | 
|  | summary->termination_type = FAILURE; | 
|  | summary->message = | 
|  | "x_plus_delta = Plus(x, delta) failed. This should not happen " | 
|  | "as the step was valid when it was selected by the line search."; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Evaluate(evaluator, | 
|  | x_plus_delta, | 
|  | ¤t_state, | 
|  | &summary->message)) { | 
|  | summary->termination_type = FAILURE; | 
|  | summary->message = | 
|  | "Step failed to evaluate. This should not happen as the step was " | 
|  | "valid when it was selected by the line search. More details: " + | 
|  | summary->message; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Compute the norm of the step in the ambient space. | 
|  | iteration_summary.step_norm = (x_plus_delta - x).norm(); | 
|  | x = x_plus_delta; | 
|  |  | 
|  | iteration_summary.gradient_max_norm = current_state.gradient_max_norm; | 
|  | iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm); | 
|  | iteration_summary.cost_change = previous_state.cost - current_state.cost; | 
|  | iteration_summary.cost = current_state.cost + summary->fixed_cost; | 
|  |  | 
|  | iteration_summary.step_is_valid = true; | 
|  | iteration_summary.step_is_successful = true; | 
|  | iteration_summary.step_size =  current_state.step_size; | 
|  | iteration_summary.line_search_function_evaluations = | 
|  | line_search_summary.num_function_evaluations; | 
|  | iteration_summary.line_search_gradient_evaluations = | 
|  | line_search_summary.num_gradient_evaluations; | 
|  | iteration_summary.line_search_iterations = | 
|  | line_search_summary.num_iterations; | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time | 
|  | + summary->preprocessor_time_in_seconds; | 
|  |  | 
|  | // Iterations inside the line search algorithm are considered | 
|  | // 'steps' in the broader context, to distinguish these inner | 
|  | // iterations from from the outer iterations of the line search | 
|  | // minimizer. The number of line search steps is the total number | 
|  | // of inner line search iterations (or steps) across the entire | 
|  | // minimization. | 
|  | summary->num_line_search_steps +=  line_search_summary.num_iterations; | 
|  | summary->line_search_cost_evaluation_time_in_seconds += | 
|  | line_search_summary.cost_evaluation_time_in_seconds; | 
|  | summary->line_search_gradient_evaluation_time_in_seconds += | 
|  | line_search_summary.gradient_evaluation_time_in_seconds; | 
|  | summary->line_search_polynomial_minimization_time_in_seconds += | 
|  | line_search_summary.polynomial_minimization_time_in_seconds; | 
|  | summary->line_search_total_time_in_seconds += | 
|  | line_search_summary.total_time_in_seconds; | 
|  | ++summary->num_successful_steps; | 
|  |  | 
|  | const double step_size_tolerance = options.parameter_tolerance * | 
|  | (x_norm + options.parameter_tolerance); | 
|  | if (iteration_summary.step_norm <= step_size_tolerance) { | 
|  | summary->message = | 
|  | StringPrintf("Parameter tolerance reached. " | 
|  | "Relative step_norm: %e <= %e.", | 
|  | (iteration_summary.step_norm / | 
|  | (x_norm + options.parameter_tolerance)), | 
|  | options.parameter_tolerance); | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) { | 
|  | summary->message = StringPrintf("Gradient tolerance reached. " | 
|  | "Gradient max norm: %e <= %e", | 
|  | iteration_summary.gradient_max_norm, | 
|  | options.gradient_tolerance); | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const double absolute_function_tolerance = | 
|  | options.function_tolerance * previous_state.cost; | 
|  | if (fabs(iteration_summary.cost_change) <= absolute_function_tolerance) { | 
|  | summary->message = | 
|  | StringPrintf("Function tolerance reached. " | 
|  | "|cost_change|/cost: %e <= %e", | 
|  | fabs(iteration_summary.cost_change) / | 
|  | previous_state.cost, | 
|  | options.function_tolerance); | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | break; | 
|  | } | 
|  |  | 
|  | summary->iterations.push_back(iteration_summary); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |