| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // A simple example of optimizing a sampled function by using cubic | 
 | // interpolation. | 
 |  | 
 | #include "ceres/ceres.h" | 
 | #include "ceres/cubic_interpolation.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | using Interpolator = ceres::CubicInterpolator<ceres::Grid1D<double>>; | 
 |  | 
 | // A simple cost functor that interfaces an interpolated table of | 
 | // values with automatic differentiation. | 
 | struct InterpolatedCostFunctor { | 
 |   explicit InterpolatedCostFunctor(const Interpolator& interpolator) | 
 |       : interpolator(interpolator) {} | 
 |  | 
 |   template <typename T> | 
 |   bool operator()(const T* x, T* residuals) const { | 
 |     interpolator.Evaluate(*x, residuals); | 
 |     return true; | 
 |   } | 
 |  | 
 |   static ceres::CostFunction* Create(const Interpolator& interpolator) { | 
 |     return new ceres::AutoDiffCostFunction<InterpolatedCostFunctor, 1, 1>( | 
 |         interpolator); | 
 |   } | 
 |  | 
 |  private: | 
 |   const Interpolator& interpolator; | 
 | }; | 
 |  | 
 | int main(int argc, char** argv) { | 
 |   google::InitGoogleLogging(argv[0]); | 
 |  | 
 |   // Evaluate the function f(x) = (x - 4.5)^2; | 
 |   const int kNumSamples = 10; | 
 |   double values[kNumSamples]; | 
 |   for (int i = 0; i < kNumSamples; ++i) { | 
 |     values[i] = (i - 4.5) * (i - 4.5); | 
 |   } | 
 |  | 
 |   ceres::Grid1D<double> array(values, 0, kNumSamples); | 
 |   Interpolator interpolator(array); | 
 |  | 
 |   double x = 1.0; | 
 |   ceres::Problem problem; | 
 |   ceres::CostFunction* cost_function = | 
 |       InterpolatedCostFunctor::Create(interpolator); | 
 |   problem.AddResidualBlock(cost_function, nullptr, &x); | 
 |  | 
 |   ceres::Solver::Options options; | 
 |   options.minimizer_progress_to_stdout = true; | 
 |   ceres::Solver::Summary summary; | 
 |   ceres::Solve(options, &problem, &summary); | 
 |   std::cout << summary.BriefReport() << "\n"; | 
 |   std::cout << "Expected x: 4.5. Actual x : " << x << std::endl; | 
 |   return 0; | 
 | } |