| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/covariance_impl.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstdlib> | 
 | #include <memory> | 
 | #include <numeric> | 
 | #include <sstream> | 
 | #include <unordered_set> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/SVD" | 
 | #include "Eigen/SparseCore" | 
 | #include "Eigen/SparseQR" | 
 | #include "ceres/compressed_col_sparse_matrix_utils.h" | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/covariance.h" | 
 | #include "ceres/crs_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/map_util.h" | 
 | #include "ceres/parallel_for.h" | 
 | #include "ceres/parallel_utils.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/suitesparse.h" | 
 | #include "ceres/wall_time.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | using CovarianceBlocks = std::vector<std::pair<const double*, const double*>>; | 
 |  | 
 | CovarianceImpl::CovarianceImpl(const Covariance::Options& options) | 
 |     : options_(options), is_computed_(false), is_valid_(false) { | 
 |   evaluate_options_.num_threads = options_.num_threads; | 
 |   evaluate_options_.apply_loss_function = options_.apply_loss_function; | 
 | } | 
 |  | 
 | CovarianceImpl::~CovarianceImpl() = default; | 
 |  | 
 | template <typename T> | 
 | void CheckForDuplicates(std::vector<T> blocks) { | 
 |   std::sort(blocks.begin(), blocks.end()); | 
 |   auto it = std::adjacent_find(blocks.begin(), blocks.end()); | 
 |   if (it != blocks.end()) { | 
 |     // In case there are duplicates, we search for their location. | 
 |     std::map<T, std::vector<int>> blocks_map; | 
 |     for (int i = 0; i < blocks.size(); ++i) { | 
 |       blocks_map[blocks[i]].push_back(i); | 
 |     } | 
 |  | 
 |     std::ostringstream duplicates; | 
 |     while (it != blocks.end()) { | 
 |       duplicates << "("; | 
 |       for (int i = 0; i < blocks_map[*it].size() - 1; ++i) { | 
 |         duplicates << blocks_map[*it][i] << ", "; | 
 |       } | 
 |       duplicates << blocks_map[*it].back() << ")"; | 
 |       it = std::adjacent_find(it + 1, blocks.end()); | 
 |       if (it < blocks.end()) { | 
 |         duplicates << " and "; | 
 |       } | 
 |     } | 
 |  | 
 |     LOG(FATAL) << "Covariance::Compute called with duplicate blocks at " | 
 |                << "indices " << duplicates.str(); | 
 |   } | 
 | } | 
 |  | 
 | bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks, | 
 |                              ProblemImpl* problem) { | 
 |   CheckForDuplicates<std::pair<const double*, const double*>>( | 
 |       covariance_blocks); | 
 |   problem_ = problem; | 
 |   parameter_block_to_row_index_.clear(); | 
 |   covariance_matrix_ = nullptr; | 
 |   is_valid_ = (ComputeCovarianceSparsity(covariance_blocks, problem) && | 
 |                ComputeCovarianceValues()); | 
 |   is_computed_ = true; | 
 |   return is_valid_; | 
 | } | 
 |  | 
 | bool CovarianceImpl::Compute(const std::vector<const double*>& parameter_blocks, | 
 |                              ProblemImpl* problem) { | 
 |   CheckForDuplicates<const double*>(parameter_blocks); | 
 |   CovarianceBlocks covariance_blocks; | 
 |   for (int i = 0; i < parameter_blocks.size(); ++i) { | 
 |     for (int j = i; j < parameter_blocks.size(); ++j) { | 
 |       covariance_blocks.push_back( | 
 |           std::make_pair(parameter_blocks[i], parameter_blocks[j])); | 
 |     } | 
 |   } | 
 |  | 
 |   return Compute(covariance_blocks, problem); | 
 | } | 
 |  | 
 | bool CovarianceImpl::GetCovarianceBlockInTangentOrAmbientSpace( | 
 |     const double* original_parameter_block1, | 
 |     const double* original_parameter_block2, | 
 |     bool lift_covariance_to_ambient_space, | 
 |     double* covariance_block) const { | 
 |   CHECK(is_computed_) | 
 |       << "Covariance::GetCovarianceBlock called before Covariance::Compute"; | 
 |   CHECK(is_valid_) | 
 |       << "Covariance::GetCovarianceBlock called when Covariance::Compute " | 
 |       << "returned false."; | 
 |  | 
 |   // If either of the two parameter blocks is constant, then the | 
 |   // covariance block is also zero. | 
 |   if (constant_parameter_blocks_.count(original_parameter_block1) > 0 || | 
 |       constant_parameter_blocks_.count(original_parameter_block2) > 0) { | 
 |     const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); | 
 |     ParameterBlock* block1 = FindOrDie( | 
 |         parameter_map, const_cast<double*>(original_parameter_block1)); | 
 |  | 
 |     ParameterBlock* block2 = FindOrDie( | 
 |         parameter_map, const_cast<double*>(original_parameter_block2)); | 
 |  | 
 |     const int block1_size = block1->Size(); | 
 |     const int block2_size = block2->Size(); | 
 |     const int block1_tangent_size = block1->TangentSize(); | 
 |     const int block2_tangent_size = block2->TangentSize(); | 
 |     if (!lift_covariance_to_ambient_space) { | 
 |       MatrixRef(covariance_block, block1_tangent_size, block2_tangent_size) | 
 |           .setZero(); | 
 |     } else { | 
 |       MatrixRef(covariance_block, block1_size, block2_size).setZero(); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   const double* parameter_block1 = original_parameter_block1; | 
 |   const double* parameter_block2 = original_parameter_block2; | 
 |   const bool transpose = parameter_block1 > parameter_block2; | 
 |   if (transpose) { | 
 |     std::swap(parameter_block1, parameter_block2); | 
 |   } | 
 |  | 
 |   // Find where in the covariance matrix the block is located. | 
 |   const int row_begin = | 
 |       FindOrDie(parameter_block_to_row_index_, parameter_block1); | 
 |   const int col_begin = | 
 |       FindOrDie(parameter_block_to_row_index_, parameter_block2); | 
 |   const int* rows = covariance_matrix_->rows(); | 
 |   const int* cols = covariance_matrix_->cols(); | 
 |   const int row_size = rows[row_begin + 1] - rows[row_begin]; | 
 |   const int* cols_begin = cols + rows[row_begin]; | 
 |  | 
 |   // The only part that requires work is walking the compressed column | 
 |   // vector to determine where the set of columns corresponding to the | 
 |   // covariance block begin. | 
 |   int offset = 0; | 
 |   while (cols_begin[offset] != col_begin && offset < row_size) { | 
 |     ++offset; | 
 |   } | 
 |  | 
 |   if (offset == row_size) { | 
 |     LOG(ERROR) << "Unable to find covariance block for " | 
 |                << original_parameter_block1 << " " << original_parameter_block2; | 
 |     return false; | 
 |   } | 
 |  | 
 |   const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); | 
 |   ParameterBlock* block1 = | 
 |       FindOrDie(parameter_map, const_cast<double*>(parameter_block1)); | 
 |   ParameterBlock* block2 = | 
 |       FindOrDie(parameter_map, const_cast<double*>(parameter_block2)); | 
 |   const Manifold* manifold1 = block1->manifold(); | 
 |   const Manifold* manifold2 = block2->manifold(); | 
 |   const int block1_size = block1->Size(); | 
 |   const int block1_tangent_size = block1->TangentSize(); | 
 |   const int block2_size = block2->Size(); | 
 |   const int block2_tangent_size = block2->TangentSize(); | 
 |  | 
 |   ConstMatrixRef cov(covariance_matrix_->values() + rows[row_begin], | 
 |                      block1_tangent_size, | 
 |                      row_size); | 
 |  | 
 |   // Fast path when there are no manifolds or if the user does not want it | 
 |   // lifted to the ambient space. | 
 |   if ((manifold1 == nullptr && manifold2 == nullptr) || | 
 |       !lift_covariance_to_ambient_space) { | 
 |     if (transpose) { | 
 |       MatrixRef(covariance_block, block2_tangent_size, block1_tangent_size) = | 
 |           cov.block(0, offset, block1_tangent_size, block2_tangent_size) | 
 |               .transpose(); | 
 |     } else { | 
 |       MatrixRef(covariance_block, block1_tangent_size, block2_tangent_size) = | 
 |           cov.block(0, offset, block1_tangent_size, block2_tangent_size); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If manifolds are used then the covariance that has been computed is in the | 
 |   // tangent space and it needs to be lifted back to the ambient space. | 
 |   // | 
 |   // This is given by the formula | 
 |   // | 
 |   //  C'_12 = J_1 C_12 J_2' | 
 |   // | 
 |   // Where C_12 is the local tangent space covariance for parameter | 
 |   // blocks 1 and 2. J_1 and J_2 are respectively the local to global | 
 |   // jacobians for parameter blocks 1 and 2. | 
 |   // | 
 |   // See Result 5.11 on page 142 of Hartley & Zisserman (2nd Edition) | 
 |   // for a proof. | 
 |   // | 
 |   // TODO(sameeragarwal): Add caching the manifold plus_jacobian, so that they | 
 |   // are computed just once per parameter block. | 
 |   Matrix block1_jacobian(block1_size, block1_tangent_size); | 
 |   if (manifold1 == nullptr) { | 
 |     block1_jacobian.setIdentity(); | 
 |   } else { | 
 |     manifold1->PlusJacobian(parameter_block1, block1_jacobian.data()); | 
 |   } | 
 |  | 
 |   Matrix block2_jacobian(block2_size, block2_tangent_size); | 
 |   // Fast path if the user is requesting a diagonal block. | 
 |   if (parameter_block1 == parameter_block2) { | 
 |     block2_jacobian = block1_jacobian; | 
 |   } else { | 
 |     if (manifold2 == nullptr) { | 
 |       block2_jacobian.setIdentity(); | 
 |     } else { | 
 |       manifold2->PlusJacobian(parameter_block2, block2_jacobian.data()); | 
 |     } | 
 |   } | 
 |  | 
 |   if (transpose) { | 
 |     MatrixRef(covariance_block, block2_size, block1_size) = | 
 |         block2_jacobian * | 
 |         cov.block(0, offset, block1_tangent_size, block2_tangent_size) | 
 |             .transpose() * | 
 |         block1_jacobian.transpose(); | 
 |   } else { | 
 |     MatrixRef(covariance_block, block1_size, block2_size) = | 
 |         block1_jacobian * | 
 |         cov.block(0, offset, block1_tangent_size, block2_tangent_size) * | 
 |         block2_jacobian.transpose(); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool CovarianceImpl::GetCovarianceMatrixInTangentOrAmbientSpace( | 
 |     const std::vector<const double*>& parameters, | 
 |     bool lift_covariance_to_ambient_space, | 
 |     double* covariance_matrix) const { | 
 |   CHECK(is_computed_) | 
 |       << "Covariance::GetCovarianceMatrix called before Covariance::Compute"; | 
 |   CHECK(is_valid_) | 
 |       << "Covariance::GetCovarianceMatrix called when Covariance::Compute " | 
 |       << "returned false."; | 
 |  | 
 |   const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); | 
 |   // For OpenMP compatibility we need to define these vectors in advance | 
 |   const int num_parameters = parameters.size(); | 
 |   std::vector<int> parameter_sizes; | 
 |   std::vector<int> cum_parameter_size; | 
 |   parameter_sizes.reserve(num_parameters); | 
 |   cum_parameter_size.resize(num_parameters + 1); | 
 |   cum_parameter_size[0] = 0; | 
 |   for (int i = 0; i < num_parameters; ++i) { | 
 |     ParameterBlock* block = | 
 |         FindOrDie(parameter_map, const_cast<double*>(parameters[i])); | 
 |     if (lift_covariance_to_ambient_space) { | 
 |       parameter_sizes.push_back(block->Size()); | 
 |     } else { | 
 |       parameter_sizes.push_back(block->TangentSize()); | 
 |     } | 
 |   } | 
 |   std::partial_sum(parameter_sizes.begin(), | 
 |                    parameter_sizes.end(), | 
 |                    cum_parameter_size.begin() + 1); | 
 |   const int max_covariance_block_size = | 
 |       *std::max_element(parameter_sizes.begin(), parameter_sizes.end()); | 
 |   const int covariance_size = cum_parameter_size.back(); | 
 |  | 
 |   // Assemble the blocks in the covariance matrix. | 
 |   MatrixRef covariance(covariance_matrix, covariance_size, covariance_size); | 
 |   const int num_threads = options_.num_threads; | 
 |   auto workspace = std::make_unique<double[]>( | 
 |       num_threads * max_covariance_block_size * max_covariance_block_size); | 
 |  | 
 |   bool success = true; | 
 |  | 
 |   // Technically the following code is a double nested loop where | 
 |   // i = 1:n, j = i:n. | 
 |   int iteration_count = (num_parameters * (num_parameters + 1)) / 2; | 
 |   problem_->context()->EnsureMinimumThreads(num_threads); | 
 |   ParallelFor(problem_->context(), | 
 |               0, | 
 |               iteration_count, | 
 |               num_threads, | 
 |               [&](int thread_id, int k) { | 
 |                 int i, j; | 
 |                 LinearIndexToUpperTriangularIndex(k, num_parameters, &i, &j); | 
 |  | 
 |                 int covariance_row_idx = cum_parameter_size[i]; | 
 |                 int covariance_col_idx = cum_parameter_size[j]; | 
 |                 int size_i = parameter_sizes[i]; | 
 |                 int size_j = parameter_sizes[j]; | 
 |                 double* covariance_block = | 
 |                     workspace.get() + thread_id * max_covariance_block_size * | 
 |                                           max_covariance_block_size; | 
 |                 if (!GetCovarianceBlockInTangentOrAmbientSpace( | 
 |                         parameters[i], | 
 |                         parameters[j], | 
 |                         lift_covariance_to_ambient_space, | 
 |                         covariance_block)) { | 
 |                   success = false; | 
 |                 } | 
 |  | 
 |                 covariance.block( | 
 |                     covariance_row_idx, covariance_col_idx, size_i, size_j) = | 
 |                     MatrixRef(covariance_block, size_i, size_j); | 
 |  | 
 |                 if (i != j) { | 
 |                   covariance.block( | 
 |                       covariance_col_idx, covariance_row_idx, size_j, size_i) = | 
 |                       MatrixRef(covariance_block, size_i, size_j).transpose(); | 
 |                 } | 
 |               }); | 
 |   return success; | 
 | } | 
 |  | 
 | // Determine the sparsity pattern of the covariance matrix based on | 
 | // the block pairs requested by the user. | 
 | bool CovarianceImpl::ComputeCovarianceSparsity( | 
 |     const CovarianceBlocks& original_covariance_blocks, ProblemImpl* problem) { | 
 |   EventLogger event_logger("CovarianceImpl::ComputeCovarianceSparsity"); | 
 |  | 
 |   // Determine an ordering for the parameter block, by sorting the | 
 |   // parameter blocks by their pointers. | 
 |   std::vector<double*> all_parameter_blocks; | 
 |   problem->GetParameterBlocks(&all_parameter_blocks); | 
 |   const ProblemImpl::ParameterMap& parameter_map = problem->parameter_map(); | 
 |   std::unordered_set<ParameterBlock*> parameter_blocks_in_use; | 
 |   std::vector<ResidualBlock*> residual_blocks; | 
 |   problem->GetResidualBlocks(&residual_blocks); | 
 |  | 
 |   for (auto* residual_block : residual_blocks) { | 
 |     parameter_blocks_in_use.insert(residual_block->parameter_blocks(), | 
 |                                    residual_block->parameter_blocks() + | 
 |                                        residual_block->NumParameterBlocks()); | 
 |   } | 
 |  | 
 |   constant_parameter_blocks_.clear(); | 
 |   std::vector<double*>& active_parameter_blocks = | 
 |       evaluate_options_.parameter_blocks; | 
 |   active_parameter_blocks.clear(); | 
 |   for (auto* parameter_block : all_parameter_blocks) { | 
 |     ParameterBlock* block = FindOrDie(parameter_map, parameter_block); | 
 |     if (!block->IsConstant() && (parameter_blocks_in_use.count(block) > 0)) { | 
 |       active_parameter_blocks.push_back(parameter_block); | 
 |     } else { | 
 |       constant_parameter_blocks_.insert(parameter_block); | 
 |     } | 
 |   } | 
 |  | 
 |   std::sort(active_parameter_blocks.begin(), active_parameter_blocks.end()); | 
 |  | 
 |   // Compute the number of rows.  Map each parameter block to the | 
 |   // first row corresponding to it in the covariance matrix using the | 
 |   // ordering of parameter blocks just constructed. | 
 |   int num_rows = 0; | 
 |   parameter_block_to_row_index_.clear(); | 
 |   for (auto* parameter_block : active_parameter_blocks) { | 
 |     const int parameter_block_size = | 
 |         problem->ParameterBlockTangentSize(parameter_block); | 
 |     parameter_block_to_row_index_[parameter_block] = num_rows; | 
 |     num_rows += parameter_block_size; | 
 |   } | 
 |  | 
 |   // Compute the number of non-zeros in the covariance matrix.  Along | 
 |   // the way flip any covariance blocks which are in the lower | 
 |   // triangular part of the matrix. | 
 |   int num_nonzeros = 0; | 
 |   CovarianceBlocks covariance_blocks; | 
 |   for (const auto& block_pair : original_covariance_blocks) { | 
 |     if (constant_parameter_blocks_.count(block_pair.first) > 0 || | 
 |         constant_parameter_blocks_.count(block_pair.second) > 0) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     int index1 = FindOrDie(parameter_block_to_row_index_, block_pair.first); | 
 |     int index2 = FindOrDie(parameter_block_to_row_index_, block_pair.second); | 
 |     const int size1 = problem->ParameterBlockTangentSize(block_pair.first); | 
 |     const int size2 = problem->ParameterBlockTangentSize(block_pair.second); | 
 |     num_nonzeros += size1 * size2; | 
 |  | 
 |     // Make sure we are constructing a block upper triangular matrix. | 
 |     if (index1 > index2) { | 
 |       covariance_blocks.push_back( | 
 |           std::make_pair(block_pair.second, block_pair.first)); | 
 |     } else { | 
 |       covariance_blocks.push_back(block_pair); | 
 |     } | 
 |   } | 
 |  | 
 |   if (covariance_blocks.empty()) { | 
 |     VLOG(2) << "No non-zero covariance blocks found"; | 
 |     covariance_matrix_ = nullptr; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Sort the block pairs. As a consequence we get the covariance | 
 |   // blocks as they will occur in the CompressedRowSparseMatrix that | 
 |   // will store the covariance. | 
 |   std::sort(covariance_blocks.begin(), covariance_blocks.end()); | 
 |  | 
 |   // Fill the sparsity pattern of the covariance matrix. | 
 |   covariance_matrix_ = std::make_unique<CompressedRowSparseMatrix>( | 
 |       num_rows, num_rows, num_nonzeros); | 
 |  | 
 |   int* rows = covariance_matrix_->mutable_rows(); | 
 |   int* cols = covariance_matrix_->mutable_cols(); | 
 |  | 
 |   // Iterate over parameter blocks and in turn over the rows of the | 
 |   // covariance matrix. For each parameter block, look in the upper | 
 |   // triangular part of the covariance matrix to see if there are any | 
 |   // blocks requested by the user. If this is the case then fill out a | 
 |   // set of compressed rows corresponding to this parameter block. | 
 |   // | 
 |   // The key thing that makes this loop work is the fact that the | 
 |   // row/columns of the covariance matrix are ordered by the pointer | 
 |   // values of the parameter blocks. Thus iterating over the keys of | 
 |   // parameter_block_to_row_index_ corresponds to iterating over the | 
 |   // rows of the covariance matrix in order. | 
 |   int i = 0;       // index into covariance_blocks. | 
 |   int cursor = 0;  // index into the covariance matrix. | 
 |   for (const auto& entry : parameter_block_to_row_index_) { | 
 |     const double* row_block = entry.first; | 
 |     const int row_block_size = problem->ParameterBlockTangentSize(row_block); | 
 |     int row_begin = entry.second; | 
 |  | 
 |     // Iterate over the covariance blocks contained in this row block | 
 |     // and count the number of columns in this row block. | 
 |     int num_col_blocks = 0; | 
 |     for (int j = i; j < covariance_blocks.size(); ++j, ++num_col_blocks) { | 
 |       const std::pair<const double*, const double*>& block_pair = | 
 |           covariance_blocks[j]; | 
 |       if (block_pair.first != row_block) { | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // Fill out all the compressed rows for this parameter block. | 
 |     for (int r = 0; r < row_block_size; ++r) { | 
 |       rows[row_begin + r] = cursor; | 
 |       for (int c = 0; c < num_col_blocks; ++c) { | 
 |         const double* col_block = covariance_blocks[i + c].second; | 
 |         const int col_block_size = | 
 |             problem->ParameterBlockTangentSize(col_block); | 
 |         int col_begin = FindOrDie(parameter_block_to_row_index_, col_block); | 
 |         for (int k = 0; k < col_block_size; ++k) { | 
 |           cols[cursor++] = col_begin++; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     i += num_col_blocks; | 
 |   } | 
 |  | 
 |   rows[num_rows] = cursor; | 
 |   return true; | 
 | } | 
 |  | 
 | bool CovarianceImpl::ComputeCovarianceValues() { | 
 |   if (options_.algorithm_type == DENSE_SVD) { | 
 |     return ComputeCovarianceValuesUsingDenseSVD(); | 
 |   } | 
 |  | 
 |   if (options_.algorithm_type == SPARSE_QR) { | 
 |     if (options_.sparse_linear_algebra_library_type == EIGEN_SPARSE) { | 
 |       return ComputeCovarianceValuesUsingEigenSparseQR(); | 
 |     } | 
 |  | 
 |     if (options_.sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
 | #if !defined(CERES_NO_SUITESPARSE) | 
 |       return ComputeCovarianceValuesUsingSuiteSparseQR(); | 
 | #else | 
 |       LOG(ERROR) << "SuiteSparse is required to use the SPARSE_QR algorithm " | 
 |                  << "with " | 
 |                  << "Covariance::Options::sparse_linear_algebra_library_type " | 
 |                  << "= SUITE_SPARSE."; | 
 |       return false; | 
 | #endif | 
 |     } | 
 |  | 
 |     LOG(ERROR) << "Unsupported " | 
 |                << "Covariance::Options::sparse_linear_algebra_library_type " | 
 |                << "= " | 
 |                << SparseLinearAlgebraLibraryTypeToString( | 
 |                       options_.sparse_linear_algebra_library_type); | 
 |     return false; | 
 |   } | 
 |  | 
 |   LOG(ERROR) << "Unsupported Covariance::Options::algorithm_type = " | 
 |              << CovarianceAlgorithmTypeToString(options_.algorithm_type); | 
 |   return false; | 
 | } | 
 |  | 
 | bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() { | 
 |   EventLogger event_logger( | 
 |       "CovarianceImpl::ComputeCovarianceValuesUsingSparseQR"); | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 |   if (covariance_matrix_ == nullptr) { | 
 |     // Nothing to do, all zeros covariance matrix. | 
 |     return true; | 
 |   } | 
 |  | 
 |   CRSMatrix jacobian; | 
 |   problem_->Evaluate(evaluate_options_, nullptr, nullptr, nullptr, &jacobian); | 
 |   event_logger.AddEvent("Evaluate"); | 
 |  | 
 |   // Construct a compressed column form of the Jacobian. | 
 |   const int num_rows = jacobian.num_rows; | 
 |   const int num_cols = jacobian.num_cols; | 
 |   const int num_nonzeros = jacobian.values.size(); | 
 |  | 
 |   std::vector<SuiteSparse_long> transpose_rows(num_cols + 1, 0); | 
 |   std::vector<SuiteSparse_long> transpose_cols(num_nonzeros, 0); | 
 |   std::vector<double> transpose_values(num_nonzeros, 0); | 
 |  | 
 |   for (int idx = 0; idx < num_nonzeros; ++idx) { | 
 |     transpose_rows[jacobian.cols[idx] + 1] += 1; | 
 |   } | 
 |  | 
 |   for (int i = 1; i < transpose_rows.size(); ++i) { | 
 |     transpose_rows[i] += transpose_rows[i - 1]; | 
 |   } | 
 |  | 
 |   for (int r = 0; r < num_rows; ++r) { | 
 |     for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { | 
 |       const int c = jacobian.cols[idx]; | 
 |       const int transpose_idx = transpose_rows[c]; | 
 |       transpose_cols[transpose_idx] = r; | 
 |       transpose_values[transpose_idx] = jacobian.values[idx]; | 
 |       ++transpose_rows[c]; | 
 |     } | 
 |   } | 
 |  | 
 |   for (int i = transpose_rows.size() - 1; i > 0; --i) { | 
 |     transpose_rows[i] = transpose_rows[i - 1]; | 
 |   } | 
 |   transpose_rows[0] = 0; | 
 |  | 
 |   cholmod_sparse cholmod_jacobian; | 
 |   cholmod_jacobian.nrow = num_rows; | 
 |   cholmod_jacobian.ncol = num_cols; | 
 |   cholmod_jacobian.nzmax = num_nonzeros; | 
 |   cholmod_jacobian.nz = nullptr; | 
 |   cholmod_jacobian.p = reinterpret_cast<void*>(transpose_rows.data()); | 
 |   cholmod_jacobian.i = reinterpret_cast<void*>(transpose_cols.data()); | 
 |   cholmod_jacobian.x = reinterpret_cast<void*>(transpose_values.data()); | 
 |   cholmod_jacobian.z = nullptr; | 
 |   cholmod_jacobian.stype = 0;  // Matrix is not symmetric. | 
 |   cholmod_jacobian.itype = CHOLMOD_LONG; | 
 |   cholmod_jacobian.xtype = CHOLMOD_REAL; | 
 |   cholmod_jacobian.dtype = CHOLMOD_DOUBLE; | 
 |   cholmod_jacobian.sorted = 1; | 
 |   cholmod_jacobian.packed = 1; | 
 |  | 
 |   cholmod_common cc; | 
 |   cholmod_l_start(&cc); | 
 |  | 
 |   cholmod_sparse* R = nullptr; | 
 |   SuiteSparse_long* permutation = nullptr; | 
 |  | 
 |   // Compute a Q-less QR factorization of the Jacobian. Since we are | 
 |   // only interested in inverting J'J = R'R, we do not need Q. This | 
 |   // saves memory and gives us R as a permuted compressed column | 
 |   // sparse matrix. | 
 |   // | 
 |   // TODO(sameeragarwal): Currently the symbolic factorization and the | 
 |   // numeric factorization is done at the same time, and this does not | 
 |   // explicitly account for the block column and row structure in the | 
 |   // matrix. When using AMD, we have observed in the past that | 
 |   // computing the ordering with the block matrix is significantly | 
 |   // more efficient, both in runtime as well as the quality of | 
 |   // ordering computed. So, it maybe worth doing that analysis | 
 |   // separately. | 
 |   const SuiteSparse_long rank = SuiteSparseQR<double>( | 
 |       SPQR_ORDERING_BESTAMD, | 
 |       options_.column_pivot_threshold < 0 ? SPQR_DEFAULT_TOL | 
 |                                           : options_.column_pivot_threshold, | 
 |       static_cast<int64_t>(cholmod_jacobian.ncol), | 
 |       &cholmod_jacobian, | 
 |       &R, | 
 |       &permutation, | 
 |       &cc); | 
 |   event_logger.AddEvent("Numeric Factorization"); | 
 |   if (R == nullptr) { | 
 |     LOG(ERROR) << "Something is wrong. SuiteSparseQR returned R = nullptr."; | 
 |     free(permutation); | 
 |     cholmod_l_finish(&cc); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (rank < cholmod_jacobian.ncol) { | 
 |     LOG(WARNING) << "Jacobian matrix is rank deficient. " | 
 |                  << "Number of columns: " << cholmod_jacobian.ncol | 
 |                  << " rank: " << rank; | 
 |     free(permutation); | 
 |     cholmod_l_free_sparse(&R, &cc); | 
 |     cholmod_l_finish(&cc); | 
 |     return false; | 
 |   } | 
 |  | 
 |   std::vector<int> inverse_permutation(num_cols); | 
 |   if (permutation) { | 
 |     for (SuiteSparse_long i = 0; i < num_cols; ++i) { | 
 |       inverse_permutation[permutation[i]] = i; | 
 |     } | 
 |   } else { | 
 |     for (SuiteSparse_long i = 0; i < num_cols; ++i) { | 
 |       inverse_permutation[i] = i; | 
 |     } | 
 |   } | 
 |  | 
 |   const int* rows = covariance_matrix_->rows(); | 
 |   const int* cols = covariance_matrix_->cols(); | 
 |   double* values = covariance_matrix_->mutable_values(); | 
 |  | 
 |   // The following loop exploits the fact that the i^th column of A^{-1} | 
 |   // is given by the solution to the linear system | 
 |   // | 
 |   //  A x = e_i | 
 |   // | 
 |   // where e_i is a vector with e(i) = 1 and all other entries zero. | 
 |   // | 
 |   // Since the covariance matrix is symmetric, the i^th row and column | 
 |   // are equal. | 
 |   const int num_threads = options_.num_threads; | 
 |   auto workspace = std::make_unique<double[]>(num_threads * num_cols); | 
 |  | 
 |   problem_->context()->EnsureMinimumThreads(num_threads); | 
 |   ParallelFor( | 
 |       problem_->context(), 0, num_cols, num_threads, [&](int thread_id, int r) { | 
 |         const int row_begin = rows[r]; | 
 |         const int row_end = rows[r + 1]; | 
 |         if (row_end != row_begin) { | 
 |           double* solution = workspace.get() + thread_id * num_cols; | 
 |           SolveRTRWithSparseRHS<SuiteSparse_long>( | 
 |               num_cols, | 
 |               static_cast<SuiteSparse_long*>(R->i), | 
 |               static_cast<SuiteSparse_long*>(R->p), | 
 |               static_cast<double*>(R->x), | 
 |               inverse_permutation[r], | 
 |               solution); | 
 |           for (int idx = row_begin; idx < row_end; ++idx) { | 
 |             const int c = cols[idx]; | 
 |             values[idx] = solution[inverse_permutation[c]]; | 
 |           } | 
 |         } | 
 |       }); | 
 |  | 
 |   free(permutation); | 
 |   cholmod_l_free_sparse(&R, &cc); | 
 |   cholmod_l_finish(&cc); | 
 |   event_logger.AddEvent("Inversion"); | 
 |   return true; | 
 |  | 
 | #else  // CERES_NO_SUITESPARSE | 
 |  | 
 |   return false; | 
 |  | 
 | #endif  // CERES_NO_SUITESPARSE | 
 | } | 
 |  | 
 | bool CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD() { | 
 |   EventLogger event_logger( | 
 |       "CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD"); | 
 |   if (covariance_matrix_ == nullptr) { | 
 |     // Nothing to do, all zeros covariance matrix. | 
 |     return true; | 
 |   } | 
 |  | 
 |   CRSMatrix jacobian; | 
 |   problem_->Evaluate(evaluate_options_, nullptr, nullptr, nullptr, &jacobian); | 
 |   event_logger.AddEvent("Evaluate"); | 
 |  | 
 |   Matrix dense_jacobian(jacobian.num_rows, jacobian.num_cols); | 
 |   dense_jacobian.setZero(); | 
 |   for (int r = 0; r < jacobian.num_rows; ++r) { | 
 |     for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { | 
 |       const int c = jacobian.cols[idx]; | 
 |       dense_jacobian(r, c) = jacobian.values[idx]; | 
 |     } | 
 |   } | 
 |   event_logger.AddEvent("ConvertToDenseMatrix"); | 
 |  | 
 |   Eigen::BDCSVD<Matrix> svd(dense_jacobian, | 
 |                             Eigen::ComputeThinU | Eigen::ComputeThinV); | 
 |  | 
 |   event_logger.AddEvent("SingularValueDecomposition"); | 
 |  | 
 |   const Vector singular_values = svd.singularValues(); | 
 |   const int num_singular_values = singular_values.rows(); | 
 |   Vector inverse_squared_singular_values(num_singular_values); | 
 |   inverse_squared_singular_values.setZero(); | 
 |  | 
 |   const double max_singular_value = singular_values[0]; | 
 |   const double min_singular_value_ratio = | 
 |       sqrt(options_.min_reciprocal_condition_number); | 
 |  | 
 |   const bool automatic_truncation = (options_.null_space_rank < 0); | 
 |   const int max_rank = std::min(num_singular_values, | 
 |                                 num_singular_values - options_.null_space_rank); | 
 |  | 
 |   // Compute the squared inverse of the singular values. Truncate the | 
 |   // computation based on min_singular_value_ratio and | 
 |   // null_space_rank. When either of these two quantities are active, | 
 |   // the resulting covariance matrix is a Moore-Penrose inverse | 
 |   // instead of a regular inverse. | 
 |   for (int i = 0; i < max_rank; ++i) { | 
 |     const double singular_value_ratio = singular_values[i] / max_singular_value; | 
 |     if (singular_value_ratio < min_singular_value_ratio) { | 
 |       // Since the singular values are in decreasing order, if | 
 |       // automatic truncation is enabled, then from this point on | 
 |       // all values will fail the ratio test and there is nothing to | 
 |       // do in this loop. | 
 |       if (automatic_truncation) { | 
 |         break; | 
 |       } else { | 
 |         LOG(ERROR) << "Error: Covariance matrix is near rank deficient " | 
 |                    << "and the user did not specify a non-zero" | 
 |                    << "Covariance::Options::null_space_rank " | 
 |                    << "to enable the computation of a Pseudo-Inverse. " | 
 |                    << "Reciprocal condition number: " | 
 |                    << singular_value_ratio * singular_value_ratio << " " | 
 |                    << "min_reciprocal_condition_number: " | 
 |                    << options_.min_reciprocal_condition_number; | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     inverse_squared_singular_values[i] = | 
 |         1.0 / (singular_values[i] * singular_values[i]); | 
 |   } | 
 |  | 
 |   Matrix dense_covariance = svd.matrixV() * | 
 |                             inverse_squared_singular_values.asDiagonal() * | 
 |                             svd.matrixV().transpose(); | 
 |   event_logger.AddEvent("PseudoInverse"); | 
 |  | 
 |   const int num_rows = covariance_matrix_->num_rows(); | 
 |   const int* rows = covariance_matrix_->rows(); | 
 |   const int* cols = covariance_matrix_->cols(); | 
 |   double* values = covariance_matrix_->mutable_values(); | 
 |  | 
 |   for (int r = 0; r < num_rows; ++r) { | 
 |     for (int idx = rows[r]; idx < rows[r + 1]; ++idx) { | 
 |       const int c = cols[idx]; | 
 |       values[idx] = dense_covariance(r, c); | 
 |     } | 
 |   } | 
 |   event_logger.AddEvent("CopyToCovarianceMatrix"); | 
 |   return true; | 
 | } | 
 |  | 
 | bool CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR() { | 
 |   EventLogger event_logger( | 
 |       "CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR"); | 
 |   if (covariance_matrix_ == nullptr) { | 
 |     // Nothing to do, all zeros covariance matrix. | 
 |     return true; | 
 |   } | 
 |  | 
 |   CRSMatrix jacobian; | 
 |   problem_->Evaluate(evaluate_options_, nullptr, nullptr, nullptr, &jacobian); | 
 |   event_logger.AddEvent("Evaluate"); | 
 |  | 
 |   using EigenSparseMatrix = Eigen::SparseMatrix<double, Eigen::ColMajor>; | 
 |  | 
 |   // Convert the matrix to column major order as required by SparseQR. | 
 |   EigenSparseMatrix sparse_jacobian = | 
 |       Eigen::Map<Eigen::SparseMatrix<double, Eigen::RowMajor>>( | 
 |           jacobian.num_rows, | 
 |           jacobian.num_cols, | 
 |           static_cast<int>(jacobian.values.size()), | 
 |           jacobian.rows.data(), | 
 |           jacobian.cols.data(), | 
 |           jacobian.values.data()); | 
 |   event_logger.AddEvent("ConvertToSparseMatrix"); | 
 |  | 
 |   Eigen::SparseQR<EigenSparseMatrix, Eigen::COLAMDOrdering<int>> qr; | 
 |   if (options_.column_pivot_threshold > 0) { | 
 |     qr.setPivotThreshold(options_.column_pivot_threshold); | 
 |   } | 
 |  | 
 |   qr.compute(sparse_jacobian); | 
 |   event_logger.AddEvent("QRDecomposition"); | 
 |  | 
 |   if (qr.info() != Eigen::Success) { | 
 |     LOG(ERROR) << "Eigen::SparseQR decomposition failed."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (qr.rank() < jacobian.num_cols) { | 
 |     LOG(ERROR) << "Jacobian matrix is rank deficient. " | 
 |                << "Number of columns: " << jacobian.num_cols | 
 |                << " rank: " << qr.rank(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   const int* rows = covariance_matrix_->rows(); | 
 |   const int* cols = covariance_matrix_->cols(); | 
 |   double* values = covariance_matrix_->mutable_values(); | 
 |  | 
 |   // Compute the inverse column permutation used by QR factorization. | 
 |   Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic> inverse_permutation = | 
 |       qr.colsPermutation().inverse(); | 
 |  | 
 |   // The following loop exploits the fact that the i^th column of A^{-1} | 
 |   // is given by the solution to the linear system | 
 |   // | 
 |   //  A x = e_i | 
 |   // | 
 |   // where e_i is a vector with e(i) = 1 and all other entries zero. | 
 |   // | 
 |   // Since the covariance matrix is symmetric, the i^th row and column | 
 |   // are equal. | 
 |   const int num_cols = jacobian.num_cols; | 
 |   const int num_threads = options_.num_threads; | 
 |   auto workspace = std::make_unique<double[]>(num_threads * num_cols); | 
 |  | 
 |   problem_->context()->EnsureMinimumThreads(num_threads); | 
 |   ParallelFor( | 
 |       problem_->context(), 0, num_cols, num_threads, [&](int thread_id, int r) { | 
 |         const int row_begin = rows[r]; | 
 |         const int row_end = rows[r + 1]; | 
 |         if (row_end != row_begin) { | 
 |           double* solution = workspace.get() + thread_id * num_cols; | 
 |           SolveRTRWithSparseRHS<int>(num_cols, | 
 |                                      qr.matrixR().innerIndexPtr(), | 
 |                                      qr.matrixR().outerIndexPtr(), | 
 |                                      &qr.matrixR().data().value(0), | 
 |                                      inverse_permutation.indices().coeff(r), | 
 |                                      solution); | 
 |  | 
 |           // Assign the values of the computed covariance using the | 
 |           // inverse permutation used in the QR factorization. | 
 |           for (int idx = row_begin; idx < row_end; ++idx) { | 
 |             const int c = cols[idx]; | 
 |             values[idx] = solution[inverse_permutation.indices().coeff(c)]; | 
 |           } | 
 |         } | 
 |       }); | 
 |  | 
 |   event_logger.AddEvent("Inverse"); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |