| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
 |  | 
 | #ifndef CERES_INTERNAL_CUDA_BLOCK_STRUCTURE_H_ | 
 | #define CERES_INTERNAL_CUDA_BLOCK_STRUCTURE_H_ | 
 |  | 
 | #include "ceres/internal/config.h" | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/cuda_buffer.h" | 
 |  | 
 | namespace ceres::internal { | 
 | class CudaBlockStructureTest; | 
 |  | 
 | // This class stores a read-only block-sparse structure in gpu memory. | 
 | // Invariants are the same as those of CompressedRowBlockStructure. | 
 | // In order to simplify allocation and copying data to gpu, cells from all | 
 | // row-blocks are stored in a single array sequentially. Array | 
 | // first_cell_in_row_block of size num_row_blocks + 1 allows to identify range | 
 | // of cells corresponding to a row-block. Cells corresponding to i-th row-block | 
 | // are stored in sub-array cells[first_cell_in_row_block[i]; ... | 
 | // first_cell_in_row_block[i + 1] - 1], and their order is preserved. | 
 | class CERES_NO_EXPORT CudaBlockSparseStructure { | 
 |  public: | 
 |   // CompressedRowBlockStructure is contains a vector of CompressedLists, with | 
 |   // each CompressedList containing a vector of Cells. We precompute a flat | 
 |   // array of cells on cpu and transfer it to the gpu. | 
 |   CudaBlockSparseStructure(const CompressedRowBlockStructure& block_structure, | 
 |                            ContextImpl* context); | 
 |   // In the case of partitioned matrices, number of non-zeros in E and layout of | 
 |   // F are computed | 
 |   CudaBlockSparseStructure(const CompressedRowBlockStructure& block_structure, | 
 |                            const int num_col_blocks_e, | 
 |                            ContextImpl* context); | 
 |  | 
 |   int num_rows() const { return num_rows_; } | 
 |   int num_cols() const { return num_cols_; } | 
 |   int num_cells() const { return num_cells_; } | 
 |   int num_nonzeros() const { return num_nonzeros_; } | 
 |   // When partitioned matrix constructor was used, returns number of non-zeros | 
 |   // in E sub-matrix | 
 |   int num_nonzeros_e() const { return num_nonzeros_e_; } | 
 |   int num_row_blocks() const { return num_row_blocks_; } | 
 |   int num_row_blocks_e() const { return num_row_blocks_e_; } | 
 |   int num_col_blocks() const { return num_col_blocks_; } | 
 |  | 
 |   // Returns true if values from block-sparse matrix (F sub-matrix in | 
 |   // partitioned case) can be copied to CRS matrix as-is. This is possible if | 
 |   // each row-block is stored in CRS order: | 
 |   //  - Row-block consists of a single row | 
 |   //  - Row-block contains a single cell | 
 |   bool IsCrsCompatible() const { return is_crs_compatible_; } | 
 |  | 
 |   // Device pointer to array of num_row_blocks + 1 indices of the first cell of | 
 |   // row block | 
 |   const int* first_cell_in_row_block() const { | 
 |     return first_cell_in_row_block_.data(); | 
 |   } | 
 |   // Device pointer to array of num_row_blocks + 1 indices of the first value in | 
 |   // this or subsequent row-blocks of submatrix F | 
 |   const int* value_offset_row_block_f() const { | 
 |     return value_offset_row_block_f_.data(); | 
 |   } | 
 |   // Device pointer to array of num_cells cells, sorted by row-block | 
 |   const Cell* cells() const { return cells_.data(); } | 
 |   // Device pointer to array of row blocks | 
 |   const Block* row_blocks() const { return row_blocks_.data(); } | 
 |   // Device pointer to array of column blocks | 
 |   const Block* col_blocks() const { return col_blocks_.data(); } | 
 |  | 
 |  private: | 
 |   int num_rows_; | 
 |   int num_cols_; | 
 |   int num_cells_; | 
 |   int num_nonzeros_; | 
 |   int num_nonzeros_e_; | 
 |   int num_row_blocks_; | 
 |   int num_row_blocks_e_; | 
 |   int num_col_blocks_; | 
 |   bool is_crs_compatible_; | 
 |   CudaBuffer<int> first_cell_in_row_block_; | 
 |   CudaBuffer<int> value_offset_row_block_f_; | 
 |   CudaBuffer<Cell> cells_; | 
 |   CudaBuffer<Block> row_blocks_; | 
 |   CudaBuffer<Block> col_blocks_; | 
 |   friend class CudaBlockStructureTest; | 
 | }; | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_NO_CUDA | 
 | #endif  // CERES_INTERNAL_CUDA_BLOCK_SPARSE_STRUCTURE_H_ |