| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
 |  | 
 | #include "ceres/cuda_partitioned_block_sparse_crs_view.h" | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | #include "ceres/cuda_block_structure.h" | 
 | #include "ceres/cuda_kernels_bsm_to_crs.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | CudaPartitionedBlockSparseCRSView::CudaPartitionedBlockSparseCRSView( | 
 |     const BlockSparseMatrix& bsm, | 
 |     const int num_col_blocks_e, | 
 |     ContextImpl* context) | 
 |     : | 
 |  | 
 |       context_(context) { | 
 |   const auto& bs = *bsm.block_structure(); | 
 |   block_structure_ = | 
 |       std::make_unique<CudaBlockSparseStructure>(bs, num_col_blocks_e, context); | 
 |   // Determine number of non-zeros in left submatrix | 
 |   // Row-blocks are at least 1 row high, thus we can use a temporary array of | 
 |   // num_rows for ComputeNonZerosInColumnBlockSubMatrix; and later reuse it for | 
 |   // FillCRSStructurePartitioned | 
 |   const int num_rows = bsm.num_rows(); | 
 |   const int num_nonzeros_e = block_structure_->num_nonzeros_e(); | 
 |   const int num_nonzeros_f = bsm.num_nonzeros() - num_nonzeros_e; | 
 |  | 
 |   const int num_cols_e = num_col_blocks_e < bs.cols.size() | 
 |                              ? bs.cols[num_col_blocks_e].position | 
 |                              : bsm.num_cols(); | 
 |   const int num_cols_f = bsm.num_cols() - num_cols_e; | 
 |  | 
 |   CudaBuffer<int32_t> rows_e(context, num_rows + 1); | 
 |   CudaBuffer<int32_t> cols_e(context, num_nonzeros_e); | 
 |   CudaBuffer<int32_t> rows_f(context, num_rows + 1); | 
 |   CudaBuffer<int32_t> cols_f(context, num_nonzeros_f); | 
 |  | 
 |   num_row_blocks_e_ = block_structure_->num_row_blocks_e(); | 
 |   FillCRSStructurePartitioned(block_structure_->num_row_blocks(), | 
 |                               num_rows, | 
 |                               num_row_blocks_e_, | 
 |                               num_col_blocks_e, | 
 |                               num_nonzeros_e, | 
 |                               block_structure_->first_cell_in_row_block(), | 
 |                               block_structure_->cells(), | 
 |                               block_structure_->row_blocks(), | 
 |                               block_structure_->col_blocks(), | 
 |                               rows_e.data(), | 
 |                               cols_e.data(), | 
 |                               rows_f.data(), | 
 |                               cols_f.data(), | 
 |                               context->DefaultStream(), | 
 |                               context->is_cuda_memory_pools_supported_); | 
 |   f_is_crs_compatible_ = block_structure_->IsCrsCompatible(); | 
 |   if (f_is_crs_compatible_) { | 
 |     block_structure_ = nullptr; | 
 |   } else { | 
 |     streamed_buffer_ = std::make_unique<CudaStreamedBuffer<double>>( | 
 |         context, kMaxTemporaryArraySize); | 
 |   } | 
 |   matrix_e_ = std::make_unique<CudaSparseMatrix>( | 
 |       num_cols_e, std::move(rows_e), std::move(cols_e), context); | 
 |   matrix_f_ = std::make_unique<CudaSparseMatrix>( | 
 |       num_cols_f, std::move(rows_f), std::move(cols_f), context); | 
 |  | 
 |   CHECK_EQ(bsm.num_nonzeros(), | 
 |            matrix_e_->num_nonzeros() + matrix_f_->num_nonzeros()); | 
 |  | 
 |   UpdateValues(bsm); | 
 | } | 
 |  | 
 | void CudaPartitionedBlockSparseCRSView::UpdateValues( | 
 |     const BlockSparseMatrix& bsm) { | 
 |   if (f_is_crs_compatible_) { | 
 |     CHECK_EQ(cudaSuccess, | 
 |              cudaMemcpyAsync(matrix_e_->mutable_values(), | 
 |                              bsm.values(), | 
 |                              matrix_e_->num_nonzeros() * sizeof(double), | 
 |                              cudaMemcpyHostToDevice, | 
 |                              context_->DefaultStream())); | 
 |  | 
 |     CHECK_EQ(cudaSuccess, | 
 |              cudaMemcpyAsync(matrix_f_->mutable_values(), | 
 |                              bsm.values() + matrix_e_->num_nonzeros(), | 
 |                              matrix_f_->num_nonzeros() * sizeof(double), | 
 |                              cudaMemcpyHostToDevice, | 
 |                              context_->DefaultStream())); | 
 |     return; | 
 |   } | 
 |   streamed_buffer_->CopyToGpu( | 
 |       bsm.values(), | 
 |       bsm.num_nonzeros(), | 
 |       [block_structure = block_structure_.get(), | 
 |        num_nonzeros_e = matrix_e_->num_nonzeros(), | 
 |        num_row_blocks_e = num_row_blocks_e_, | 
 |        values_f = matrix_f_->mutable_values(), | 
 |        rows_f = matrix_f_->rows()]( | 
 |           const double* values, int num_values, int offset, auto stream) { | 
 |         PermuteToCRSPartitionedF(num_nonzeros_e + offset, | 
 |                                  num_values, | 
 |                                  block_structure->num_row_blocks(), | 
 |                                  num_row_blocks_e, | 
 |                                  block_structure->first_cell_in_row_block(), | 
 |                                  block_structure->value_offset_row_block_f(), | 
 |                                  block_structure->cells(), | 
 |                                  block_structure->row_blocks(), | 
 |                                  block_structure->col_blocks(), | 
 |                                  rows_f, | 
 |                                  values, | 
 |                                  values_f, | 
 |                                  stream); | 
 |       }); | 
 |   CHECK_EQ(cudaSuccess, | 
 |            cudaMemcpyAsync(matrix_e_->mutable_values(), | 
 |                            bsm.values(), | 
 |                            matrix_e_->num_nonzeros() * sizeof(double), | 
 |                            cudaMemcpyHostToDevice, | 
 |                            context_->DefaultStream())); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal | 
 | #endif  // CERES_NO_CUDA |