|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/reorder_program.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/SparseCore" | 
|  | #include "ceres/cxsparse.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/ordered_groups.h" | 
|  | #include "ceres/parameter_block.h" | 
|  | #include "ceres/parameter_block_ordering.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/residual_block.h" | 
|  | #include "ceres/solver.h" | 
|  | #include "ceres/suitesparse.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | #ifdef CERES_USE_EIGEN_SPARSE | 
|  | #include "Eigen/OrderingMethods" | 
|  | #endif | 
|  |  | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::map; | 
|  | using std::set; | 
|  | using std::string; | 
|  | using std::vector; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Find the minimum index of any parameter block to the given | 
|  | // residual.  Parameter blocks that have indices greater than | 
|  | // size_of_first_elimination_group are considered to have an index | 
|  | // equal to size_of_first_elimination_group. | 
|  | static int MinParameterBlock(const ResidualBlock* residual_block, | 
|  | int size_of_first_elimination_group) { | 
|  | int min_parameter_block_position = size_of_first_elimination_group; | 
|  | for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) { | 
|  | ParameterBlock* parameter_block = residual_block->parameter_blocks()[i]; | 
|  | if (!parameter_block->IsConstant()) { | 
|  | CHECK_NE(parameter_block->index(), -1) | 
|  | << "Did you forget to call Program::SetParameterOffsetsAndIndex()? " | 
|  | << "This is a Ceres bug; please contact the developers!"; | 
|  | min_parameter_block_position = | 
|  | std::min(parameter_block->index(), min_parameter_block_position); | 
|  | } | 
|  | } | 
|  | return min_parameter_block_position; | 
|  | } | 
|  |  | 
|  | #if defined(CERES_USE_EIGEN_SPARSE) | 
|  | Eigen::SparseMatrix<int> CreateBlockJacobian( | 
|  | const TripletSparseMatrix& block_jacobian_transpose) { | 
|  | typedef Eigen::SparseMatrix<int> SparseMatrix; | 
|  | typedef Eigen::Triplet<int> Triplet; | 
|  |  | 
|  | const int* rows = block_jacobian_transpose.rows(); | 
|  | const int* cols = block_jacobian_transpose.cols(); | 
|  | int num_nonzeros = block_jacobian_transpose.num_nonzeros(); | 
|  | vector<Triplet> triplets; | 
|  | triplets.reserve(num_nonzeros); | 
|  | for (int i = 0; i < num_nonzeros; ++i) { | 
|  | triplets.push_back(Triplet(cols[i], rows[i], 1)); | 
|  | } | 
|  |  | 
|  | SparseMatrix block_jacobian(block_jacobian_transpose.num_cols(), | 
|  | block_jacobian_transpose.num_rows()); | 
|  | block_jacobian.setFromTriplets(triplets.begin(), triplets.end()); | 
|  | return block_jacobian; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void OrderingForSparseNormalCholeskyUsingSuiteSparse( | 
|  | const TripletSparseMatrix& tsm_block_jacobian_transpose, | 
|  | const vector<ParameterBlock*>& parameter_blocks, | 
|  | const ParameterBlockOrdering& parameter_block_ordering, | 
|  | int* ordering) { | 
|  | #ifdef CERES_NO_SUITESPARSE | 
|  | LOG(FATAL) << "Congratulations, you found a Ceres bug! " | 
|  | << "Please report this error to the developers."; | 
|  | #else | 
|  | SuiteSparse ss; | 
|  | cholmod_sparse* block_jacobian_transpose = ss.CreateSparseMatrix( | 
|  | const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose)); | 
|  |  | 
|  | // No CAMD or the user did not supply a useful ordering, then just | 
|  | // use regular AMD. | 
|  | if (parameter_block_ordering.NumGroups() <= 1 || | 
|  | !SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) { | 
|  | ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]); | 
|  | } else { | 
|  | vector<int> constraints; | 
|  | for (int i = 0; i < parameter_blocks.size(); ++i) { | 
|  | constraints.push_back(parameter_block_ordering.GroupId( | 
|  | parameter_blocks[i]->mutable_user_state())); | 
|  | } | 
|  |  | 
|  | // Renumber the entries of constraints to be contiguous integers | 
|  | // as CAMD requires that the group ids be in the range [0, | 
|  | // parameter_blocks.size() - 1]. | 
|  | MapValuesToContiguousRange(constraints.size(), &constraints[0]); | 
|  | ss.ConstrainedApproximateMinimumDegreeOrdering( | 
|  | block_jacobian_transpose, &constraints[0], ordering); | 
|  | } | 
|  |  | 
|  | VLOG(2) << "Block ordering stats: " | 
|  | << " flops: " << ss.mutable_cc()->fl | 
|  | << " lnz  : " << ss.mutable_cc()->lnz | 
|  | << " anz  : " << ss.mutable_cc()->anz; | 
|  |  | 
|  | ss.Free(block_jacobian_transpose); | 
|  | #endif  // CERES_NO_SUITESPARSE | 
|  | } | 
|  |  | 
|  | void OrderingForSparseNormalCholeskyUsingCXSparse( | 
|  | const TripletSparseMatrix& tsm_block_jacobian_transpose, int* ordering) { | 
|  | #ifdef CERES_NO_CXSPARSE | 
|  | LOG(FATAL) << "Congratulations, you found a Ceres bug! " | 
|  | << "Please report this error to the developers."; | 
|  | #else | 
|  | // CXSparse works with J'J instead of J'. So compute the block | 
|  | // sparsity for J'J and compute an approximate minimum degree | 
|  | // ordering. | 
|  | CXSparse cxsparse; | 
|  | cs_di* block_jacobian_transpose; | 
|  | block_jacobian_transpose = cxsparse.CreateSparseMatrix( | 
|  | const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose)); | 
|  | cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose); | 
|  | cs_di* block_hessian = | 
|  | cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian); | 
|  | cxsparse.Free(block_jacobian); | 
|  | cxsparse.Free(block_jacobian_transpose); | 
|  |  | 
|  | cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, ordering); | 
|  | cxsparse.Free(block_hessian); | 
|  | #endif  // CERES_NO_CXSPARSE | 
|  | } | 
|  |  | 
|  | void OrderingForSparseNormalCholeskyUsingEigenSparse( | 
|  | const TripletSparseMatrix& tsm_block_jacobian_transpose, int* ordering) { | 
|  | #ifndef CERES_USE_EIGEN_SPARSE | 
|  | LOG(FATAL) << "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE " | 
|  | "because Ceres was not built with support for " | 
|  | "Eigen's SimplicialLDLT decomposition. " | 
|  | "This requires enabling building with -DEIGENSPARSE=ON."; | 
|  | #else | 
|  |  | 
|  | // This conversion from a TripletSparseMatrix to a Eigen::Triplet | 
|  | // matrix is unfortunate, but unavoidable for now. It is not a | 
|  | // significant performance penalty in the grand scheme of | 
|  | // things. The right thing to do here would be to get a compressed | 
|  | // row sparse matrix representation of the jacobian and go from | 
|  | // there. But that is a project for another day. | 
|  | typedef Eigen::SparseMatrix<int> SparseMatrix; | 
|  |  | 
|  | const SparseMatrix block_jacobian = | 
|  | CreateBlockJacobian(tsm_block_jacobian_transpose); | 
|  | const SparseMatrix block_hessian = | 
|  | block_jacobian.transpose() * block_jacobian; | 
|  |  | 
|  | Eigen::AMDOrdering<int> amd_ordering; | 
|  | Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm; | 
|  | amd_ordering(block_hessian, perm); | 
|  | for (int i = 0; i < block_hessian.rows(); ++i) { | 
|  | ordering[i] = perm.indices()[i]; | 
|  | } | 
|  | #endif  // CERES_USE_EIGEN_SPARSE | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool ApplyOrdering(const ProblemImpl::ParameterMap& parameter_map, | 
|  | const ParameterBlockOrdering& ordering, | 
|  | Program* program, | 
|  | string* error) { | 
|  | const int num_parameter_blocks = program->NumParameterBlocks(); | 
|  | if (ordering.NumElements() != num_parameter_blocks) { | 
|  | *error = StringPrintf( | 
|  | "User specified ordering does not have the same " | 
|  | "number of parameters as the problem. The problem" | 
|  | "has %d blocks while the ordering has %d blocks.", | 
|  | num_parameter_blocks, | 
|  | ordering.NumElements()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | vector<ParameterBlock*>* parameter_blocks = | 
|  | program->mutable_parameter_blocks(); | 
|  | parameter_blocks->clear(); | 
|  |  | 
|  | const map<int, set<double*>>& groups = ordering.group_to_elements(); | 
|  | for (const auto& p : groups) { | 
|  | const set<double*>& group = p.second; | 
|  | for (double* parameter_block_ptr : group) { | 
|  | auto it = parameter_map.find(parameter_block_ptr); | 
|  | if (it == parameter_map.end()) { | 
|  | *error = StringPrintf( | 
|  | "User specified ordering contains a pointer " | 
|  | "to a double that is not a parameter block in " | 
|  | "the problem. The invalid double is in group: %d", | 
|  | p.first); | 
|  | return false; | 
|  | } | 
|  | parameter_blocks->push_back(it->second); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LexicographicallyOrderResidualBlocks( | 
|  | const int size_of_first_elimination_group, | 
|  | Program* program, | 
|  | string* error) { | 
|  | CHECK_GE(size_of_first_elimination_group, 1) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | // Create a histogram of the number of residuals for each E block. There is an | 
|  | // extra bucket at the end to catch all non-eliminated F blocks. | 
|  | vector<int> residual_blocks_per_e_block(size_of_first_elimination_group + 1); | 
|  | vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks(); | 
|  | vector<int> min_position_per_residual(residual_blocks->size()); | 
|  | for (int i = 0; i < residual_blocks->size(); ++i) { | 
|  | ResidualBlock* residual_block = (*residual_blocks)[i]; | 
|  | int position = | 
|  | MinParameterBlock(residual_block, size_of_first_elimination_group); | 
|  | min_position_per_residual[i] = position; | 
|  | DCHECK_LE(position, size_of_first_elimination_group); | 
|  | residual_blocks_per_e_block[position]++; | 
|  | } | 
|  |  | 
|  | // Run a cumulative sum on the histogram, to obtain offsets to the start of | 
|  | // each histogram bucket (where each bucket is for the residuals for that | 
|  | // E-block). | 
|  | vector<int> offsets(size_of_first_elimination_group + 1); | 
|  | std::partial_sum(residual_blocks_per_e_block.begin(), | 
|  | residual_blocks_per_e_block.end(), | 
|  | offsets.begin()); | 
|  | CHECK_EQ(offsets.back(), residual_blocks->size()) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | CHECK(find(residual_blocks_per_e_block.begin(), | 
|  | residual_blocks_per_e_block.end() - 1, | 
|  | 0) == residual_blocks_per_e_block.end() - 1) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | // Fill in each bucket with the residual blocks for its corresponding E block. | 
|  | // Each bucket is individually filled from the back of the bucket to the front | 
|  | // of the bucket. The filling order among the buckets is dictated by the | 
|  | // residual blocks. This loop uses the offsets as counters; subtracting one | 
|  | // from each offset as a residual block is placed in the bucket. When the | 
|  | // filling is finished, the offset pointerts should have shifted down one | 
|  | // entry (this is verified below). | 
|  | vector<ResidualBlock*> reordered_residual_blocks( | 
|  | (*residual_blocks).size(), static_cast<ResidualBlock*>(nullptr)); | 
|  | for (int i = 0; i < residual_blocks->size(); ++i) { | 
|  | int bucket = min_position_per_residual[i]; | 
|  |  | 
|  | // Decrement the cursor, which should now point at the next empty position. | 
|  | offsets[bucket]--; | 
|  |  | 
|  | // Sanity. | 
|  | CHECK(reordered_residual_blocks[offsets[bucket]] == nullptr) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i]; | 
|  | } | 
|  |  | 
|  | // Sanity check #1: The difference in bucket offsets should match the | 
|  | // histogram sizes. | 
|  | for (int i = 0; i < size_of_first_elimination_group; ++i) { | 
|  | CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i]) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  | } | 
|  | // Sanity check #2: No nullptr's left behind. | 
|  | for (int i = 0; i < reordered_residual_blocks.size(); ++i) { | 
|  | CHECK(reordered_residual_blocks[i] != nullptr) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  | } | 
|  |  | 
|  | // Now that the residuals are collected by E block, swap them in place. | 
|  | swap(*program->mutable_residual_blocks(), reordered_residual_blocks); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Pre-order the columns corresponding to the schur complement if | 
|  | // possible. | 
|  | static void MaybeReorderSchurComplementColumnsUsingSuiteSparse( | 
|  | const ParameterBlockOrdering& parameter_block_ordering, Program* program) { | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | SuiteSparse ss; | 
|  | if (!SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | vector<int> constraints; | 
|  | vector<ParameterBlock*>& parameter_blocks = | 
|  | *(program->mutable_parameter_blocks()); | 
|  |  | 
|  | for (int i = 0; i < parameter_blocks.size(); ++i) { | 
|  | constraints.push_back(parameter_block_ordering.GroupId( | 
|  | parameter_blocks[i]->mutable_user_state())); | 
|  | } | 
|  |  | 
|  | // Renumber the entries of constraints to be contiguous integers as | 
|  | // CAMD requires that the group ids be in the range [0, | 
|  | // parameter_blocks.size() - 1]. | 
|  | MapValuesToContiguousRange(constraints.size(), &constraints[0]); | 
|  |  | 
|  | // Compute a block sparse presentation of J'. | 
|  | std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose( | 
|  | program->CreateJacobianBlockSparsityTranspose()); | 
|  |  | 
|  | cholmod_sparse* block_jacobian_transpose = | 
|  | ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get()); | 
|  |  | 
|  | vector<int> ordering(parameter_blocks.size(), 0); | 
|  | ss.ConstrainedApproximateMinimumDegreeOrdering( | 
|  | block_jacobian_transpose, &constraints[0], &ordering[0]); | 
|  | ss.Free(block_jacobian_transpose); | 
|  |  | 
|  | const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks); | 
|  | for (int i = 0; i < program->NumParameterBlocks(); ++i) { | 
|  | parameter_blocks[i] = parameter_blocks_copy[ordering[i]]; | 
|  | } | 
|  |  | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void MaybeReorderSchurComplementColumnsUsingEigen( | 
|  | const int size_of_first_elimination_group, | 
|  | const ProblemImpl::ParameterMap& parameter_map, | 
|  | Program* program) { | 
|  | #if defined(CERES_USE_EIGEN_SPARSE) | 
|  | std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose( | 
|  | program->CreateJacobianBlockSparsityTranspose()); | 
|  |  | 
|  | typedef Eigen::SparseMatrix<int> SparseMatrix; | 
|  | const SparseMatrix block_jacobian = | 
|  | CreateBlockJacobian(*tsm_block_jacobian_transpose); | 
|  | const int num_rows = block_jacobian.rows(); | 
|  | const int num_cols = block_jacobian.cols(); | 
|  |  | 
|  | // Vertically partition the jacobian in parameter blocks of type E | 
|  | // and F. | 
|  | const SparseMatrix E = | 
|  | block_jacobian.block(0, 0, num_rows, size_of_first_elimination_group); | 
|  | const SparseMatrix F = | 
|  | block_jacobian.block(0, | 
|  | size_of_first_elimination_group, | 
|  | num_rows, | 
|  | num_cols - size_of_first_elimination_group); | 
|  |  | 
|  | // Block sparsity pattern of the schur complement. | 
|  | const SparseMatrix block_schur_complement = | 
|  | F.transpose() * F - F.transpose() * E * E.transpose() * F; | 
|  |  | 
|  | Eigen::AMDOrdering<int> amd_ordering; | 
|  | Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm; | 
|  | amd_ordering(block_schur_complement, perm); | 
|  |  | 
|  | const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); | 
|  | vector<ParameterBlock*> ordering(num_cols); | 
|  |  | 
|  | // The ordering of the first size_of_first_elimination_group does | 
|  | // not matter, so we preserve the existing ordering. | 
|  | for (int i = 0; i < size_of_first_elimination_group; ++i) { | 
|  | ordering[i] = parameter_blocks[i]; | 
|  | } | 
|  |  | 
|  | // For the rest of the blocks, use the ordering computed using AMD. | 
|  | for (int i = 0; i < block_schur_complement.cols(); ++i) { | 
|  | ordering[size_of_first_elimination_group + i] = | 
|  | parameter_blocks[size_of_first_elimination_group + perm.indices()[i]]; | 
|  | } | 
|  |  | 
|  | swap(*program->mutable_parameter_blocks(), ordering); | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool ReorderProgramForSchurTypeLinearSolver( | 
|  | const LinearSolverType linear_solver_type, | 
|  | const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
|  | const ProblemImpl::ParameterMap& parameter_map, | 
|  | ParameterBlockOrdering* parameter_block_ordering, | 
|  | Program* program, | 
|  | string* error) { | 
|  | if (parameter_block_ordering->NumElements() != | 
|  | program->NumParameterBlocks()) { | 
|  | *error = StringPrintf( | 
|  | "The program has %d parameter blocks, but the parameter block " | 
|  | "ordering has %d parameter blocks.", | 
|  | program->NumParameterBlocks(), | 
|  | parameter_block_ordering->NumElements()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (parameter_block_ordering->NumGroups() == 1) { | 
|  | // If the user supplied an parameter_block_ordering with just one | 
|  | // group, it is equivalent to the user supplying nullptr as an | 
|  | // parameter_block_ordering. Ceres is completely free to choose the | 
|  | // parameter block ordering as it sees fit. For Schur type solvers, | 
|  | // this means that the user wishes for Ceres to identify the | 
|  | // e_blocks, which we do by computing a maximal independent set. | 
|  | vector<ParameterBlock*> schur_ordering; | 
|  | const int size_of_first_elimination_group = | 
|  | ComputeStableSchurOrdering(*program, &schur_ordering); | 
|  |  | 
|  | CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks()) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | // Update the parameter_block_ordering object. | 
|  | for (int i = 0; i < schur_ordering.size(); ++i) { | 
|  | double* parameter_block = schur_ordering[i]->mutable_user_state(); | 
|  | const int group_id = (i < size_of_first_elimination_group) ? 0 : 1; | 
|  | parameter_block_ordering->AddElementToGroup(parameter_block, group_id); | 
|  | } | 
|  |  | 
|  | // We could call ApplyOrdering but this is cheaper and | 
|  | // simpler. | 
|  | swap(*program->mutable_parameter_blocks(), schur_ordering); | 
|  | } else { | 
|  | // The user provided an ordering with more than one elimination | 
|  | // group. | 
|  |  | 
|  | // Verify that the first elimination group is an independent set. | 
|  | const set<double*>& first_elimination_group = | 
|  | parameter_block_ordering->group_to_elements().begin()->second; | 
|  | if (!program->IsParameterBlockSetIndependent(first_elimination_group)) { | 
|  | *error = StringPrintf( | 
|  | "The first elimination group in the parameter block " | 
|  | "ordering of size %zd is not an independent set", | 
|  | first_elimination_group.size()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ApplyOrdering( | 
|  | parameter_map, *parameter_block_ordering, program, error)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  |  | 
|  | const int size_of_first_elimination_group = | 
|  | parameter_block_ordering->group_to_elements().begin()->second.size(); | 
|  |  | 
|  | if (linear_solver_type == SPARSE_SCHUR) { | 
|  | if (sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
|  | MaybeReorderSchurComplementColumnsUsingSuiteSparse( | 
|  | *parameter_block_ordering, program); | 
|  | } else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) { | 
|  | MaybeReorderSchurComplementColumnsUsingEigen( | 
|  | size_of_first_elimination_group, parameter_map, program); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Schur type solvers also require that their residual blocks be | 
|  | // lexicographically ordered. | 
|  | return LexicographicallyOrderResidualBlocks( | 
|  | size_of_first_elimination_group, program, error); | 
|  | } | 
|  |  | 
|  | bool ReorderProgramForSparseCholesky( | 
|  | const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
|  | const ParameterBlockOrdering& parameter_block_ordering, | 
|  | int start_row_block, | 
|  | Program* program, | 
|  | string* error) { | 
|  | if (parameter_block_ordering.NumElements() != program->NumParameterBlocks()) { | 
|  | *error = StringPrintf( | 
|  | "The program has %d parameter blocks, but the parameter block " | 
|  | "ordering has %d parameter blocks.", | 
|  | program->NumParameterBlocks(), | 
|  | parameter_block_ordering.NumElements()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Compute a block sparse presentation of J'. | 
|  | std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose( | 
|  | program->CreateJacobianBlockSparsityTranspose(start_row_block)); | 
|  |  | 
|  | vector<int> ordering(program->NumParameterBlocks(), 0); | 
|  | vector<ParameterBlock*>& parameter_blocks = | 
|  | *(program->mutable_parameter_blocks()); | 
|  |  | 
|  | if (sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
|  | OrderingForSparseNormalCholeskyUsingSuiteSparse( | 
|  | *tsm_block_jacobian_transpose, | 
|  | parameter_blocks, | 
|  | parameter_block_ordering, | 
|  | &ordering[0]); | 
|  | } else if (sparse_linear_algebra_library_type == CX_SPARSE) { | 
|  | OrderingForSparseNormalCholeskyUsingCXSparse(*tsm_block_jacobian_transpose, | 
|  | &ordering[0]); | 
|  | } else if (sparse_linear_algebra_library_type == ACCELERATE_SPARSE) { | 
|  | // Accelerate does not provide a function to perform reordering without | 
|  | // performing a full symbolic factorisation.  As such, we have nothing | 
|  | // to gain from trying to reorder the problem here, as it will happen | 
|  | // in AppleAccelerateCholesky::Factorize() (once) and reordering here | 
|  | // would involve performing two symbolic factorisations instead of one | 
|  | // which would have a negative overall impact on performance. | 
|  | return true; | 
|  |  | 
|  | } else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) { | 
|  | OrderingForSparseNormalCholeskyUsingEigenSparse( | 
|  | *tsm_block_jacobian_transpose, &ordering[0]); | 
|  | } | 
|  |  | 
|  | // Apply ordering. | 
|  | const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks); | 
|  | for (int i = 0; i < program->NumParameterBlocks(); ++i) { | 
|  | parameter_blocks[i] = parameter_blocks_copy[ordering[i]]; | 
|  | } | 
|  |  | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int ReorderResidualBlocksByPartition( | 
|  | const std::unordered_set<ResidualBlockId>& bottom_residual_blocks, | 
|  | Program* program) { | 
|  | auto residual_blocks = program->mutable_residual_blocks(); | 
|  | auto it = std::partition(residual_blocks->begin(), | 
|  | residual_blocks->end(), | 
|  | [&bottom_residual_blocks](ResidualBlock* r) { | 
|  | return bottom_residual_blocks.count(r) == 0; | 
|  | }); | 
|  | return it - residual_blocks->begin(); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |