| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/block_sparse_matrix.h" |
| |
| #include <cstddef> |
| #include <algorithm> |
| #include <vector> |
| #include "ceres/block_structure.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/small_blas.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::vector; |
| |
| BlockSparseMatrix::~BlockSparseMatrix() {} |
| |
| BlockSparseMatrix::BlockSparseMatrix( |
| CompressedRowBlockStructure* block_structure) |
| : num_rows_(0), |
| num_cols_(0), |
| num_nonzeros_(0), |
| values_(NULL), |
| block_structure_(block_structure) { |
| CHECK_NOTNULL(block_structure_.get()); |
| |
| // Count the number of columns in the matrix. |
| for (int i = 0; i < block_structure_->cols.size(); ++i) { |
| num_cols_ += block_structure_->cols[i].size; |
| } |
| |
| // Count the number of non-zero entries and the number of rows in |
| // the matrix. |
| for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| int row_block_size = block_structure_->rows[i].block.size; |
| num_rows_ += row_block_size; |
| |
| const vector<Cell>& cells = block_structure_->rows[i].cells; |
| for (int j = 0; j < cells.size(); ++j) { |
| int col_block_id = cells[j].block_id; |
| int col_block_size = block_structure_->cols[col_block_id].size; |
| num_nonzeros_ += col_block_size * row_block_size; |
| } |
| } |
| |
| CHECK_GE(num_rows_, 0); |
| CHECK_GE(num_cols_, 0); |
| CHECK_GE(num_nonzeros_, 0); |
| VLOG(2) << "Allocating values array with " |
| << num_nonzeros_ * sizeof(double) << " bytes."; // NOLINT |
| values_.reset(new double[num_nonzeros_]); |
| CHECK_NOTNULL(values_.get()); |
| } |
| |
| void BlockSparseMatrix::SetZero() { |
| std::fill(values_.get(), values_.get() + num_nonzeros_, 0.0); |
| } |
| |
| void BlockSparseMatrix::RightMultiply(const double* x, double* y) const { |
| CHECK_NOTNULL(x); |
| CHECK_NOTNULL(y); |
| |
| for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| int row_block_pos = block_structure_->rows[i].block.position; |
| int row_block_size = block_structure_->rows[i].block.size; |
| const vector<Cell>& cells = block_structure_->rows[i].cells; |
| for (int j = 0; j < cells.size(); ++j) { |
| int col_block_id = cells[j].block_id; |
| int col_block_size = block_structure_->cols[col_block_id].size; |
| int col_block_pos = block_structure_->cols[col_block_id].position; |
| MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
| values_.get() + cells[j].position, row_block_size, col_block_size, |
| x + col_block_pos, |
| y + row_block_pos); |
| } |
| } |
| } |
| |
| void BlockSparseMatrix::LeftMultiply(const double* x, double* y) const { |
| CHECK_NOTNULL(x); |
| CHECK_NOTNULL(y); |
| |
| for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| int row_block_pos = block_structure_->rows[i].block.position; |
| int row_block_size = block_structure_->rows[i].block.size; |
| const vector<Cell>& cells = block_structure_->rows[i].cells; |
| for (int j = 0; j < cells.size(); ++j) { |
| int col_block_id = cells[j].block_id; |
| int col_block_size = block_structure_->cols[col_block_id].size; |
| int col_block_pos = block_structure_->cols[col_block_id].position; |
| MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
| values_.get() + cells[j].position, row_block_size, col_block_size, |
| x + row_block_pos, |
| y + col_block_pos); |
| } |
| } |
| } |
| |
| void BlockSparseMatrix::SquaredColumnNorm(double* x) const { |
| CHECK_NOTNULL(x); |
| VectorRef(x, num_cols_).setZero(); |
| for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| int row_block_size = block_structure_->rows[i].block.size; |
| const vector<Cell>& cells = block_structure_->rows[i].cells; |
| for (int j = 0; j < cells.size(); ++j) { |
| int col_block_id = cells[j].block_id; |
| int col_block_size = block_structure_->cols[col_block_id].size; |
| int col_block_pos = block_structure_->cols[col_block_id].position; |
| const MatrixRef m(values_.get() + cells[j].position, |
| row_block_size, col_block_size); |
| VectorRef(x + col_block_pos, col_block_size) += m.colwise().squaredNorm(); |
| } |
| } |
| } |
| |
| void BlockSparseMatrix::ScaleColumns(const double* scale) { |
| CHECK_NOTNULL(scale); |
| |
| for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| int row_block_size = block_structure_->rows[i].block.size; |
| const vector<Cell>& cells = block_structure_->rows[i].cells; |
| for (int j = 0; j < cells.size(); ++j) { |
| int col_block_id = cells[j].block_id; |
| int col_block_size = block_structure_->cols[col_block_id].size; |
| int col_block_pos = block_structure_->cols[col_block_id].position; |
| MatrixRef m(values_.get() + cells[j].position, |
| row_block_size, col_block_size); |
| m *= ConstVectorRef(scale + col_block_pos, col_block_size).asDiagonal(); |
| } |
| } |
| } |
| |
| void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { |
| CHECK_NOTNULL(dense_matrix); |
| |
| dense_matrix->resize(num_rows_, num_cols_); |
| dense_matrix->setZero(); |
| Matrix& m = *dense_matrix; |
| |
| for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| int row_block_pos = block_structure_->rows[i].block.position; |
| int row_block_size = block_structure_->rows[i].block.size; |
| const vector<Cell>& cells = block_structure_->rows[i].cells; |
| for (int j = 0; j < cells.size(); ++j) { |
| int col_block_id = cells[j].block_id; |
| int col_block_size = block_structure_->cols[col_block_id].size; |
| int col_block_pos = block_structure_->cols[col_block_id].position; |
| int jac_pos = cells[j].position; |
| m.block(row_block_pos, col_block_pos, row_block_size, col_block_size) |
| += MatrixRef(values_.get() + jac_pos, row_block_size, col_block_size); |
| } |
| } |
| } |
| |
| void BlockSparseMatrix::ToTripletSparseMatrix( |
| TripletSparseMatrix* matrix) const { |
| CHECK_NOTNULL(matrix); |
| |
| matrix->Reserve(num_nonzeros_); |
| matrix->Resize(num_rows_, num_cols_); |
| matrix->SetZero(); |
| |
| for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| int row_block_pos = block_structure_->rows[i].block.position; |
| int row_block_size = block_structure_->rows[i].block.size; |
| const vector<Cell>& cells = block_structure_->rows[i].cells; |
| for (int j = 0; j < cells.size(); ++j) { |
| int col_block_id = cells[j].block_id; |
| int col_block_size = block_structure_->cols[col_block_id].size; |
| int col_block_pos = block_structure_->cols[col_block_id].position; |
| int jac_pos = cells[j].position; |
| for (int r = 0; r < row_block_size; ++r) { |
| for (int c = 0; c < col_block_size; ++c, ++jac_pos) { |
| matrix->mutable_rows()[jac_pos] = row_block_pos + r; |
| matrix->mutable_cols()[jac_pos] = col_block_pos + c; |
| matrix->mutable_values()[jac_pos] = values_[jac_pos]; |
| } |
| } |
| } |
| } |
| matrix->set_num_nonzeros(num_nonzeros_); |
| } |
| |
| // Return a pointer to the block structure. We continue to hold |
| // ownership of the object though. |
| const CompressedRowBlockStructure* BlockSparseMatrix::block_structure() |
| const { |
| return block_structure_.get(); |
| } |
| |
| void BlockSparseMatrix::ToTextFile(FILE* file) const { |
| CHECK_NOTNULL(file); |
| for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| const int row_block_pos = block_structure_->rows[i].block.position; |
| const int row_block_size = block_structure_->rows[i].block.size; |
| const vector<Cell>& cells = block_structure_->rows[i].cells; |
| for (int j = 0; j < cells.size(); ++j) { |
| const int col_block_id = cells[j].block_id; |
| const int col_block_size = block_structure_->cols[col_block_id].size; |
| const int col_block_pos = block_structure_->cols[col_block_id].position; |
| int jac_pos = cells[j].position; |
| for (int r = 0; r < row_block_size; ++r) { |
| for (int c = 0; c < col_block_size; ++c) { |
| fprintf(file, "% 10d % 10d %17f\n", |
| row_block_pos + r, |
| col_block_pos + c, |
| values_[jac_pos++]); |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |