| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include <algorithm> |
| #include "ceres/compressed_col_sparse_matrix_utils.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/suitesparse.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::vector; |
| |
| TEST(_, BlockPermutationToScalarPermutation) { |
| vector<int> blocks; |
| // Block structure |
| // 0 --1- ---2--- ---3--- 4 |
| // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] |
| blocks.push_back(1); |
| blocks.push_back(2); |
| blocks.push_back(3); |
| blocks.push_back(3); |
| blocks.push_back(1); |
| |
| // Block ordering |
| // [1, 0, 2, 4, 5] |
| vector<int> block_ordering; |
| block_ordering.push_back(1); |
| block_ordering.push_back(0); |
| block_ordering.push_back(2); |
| block_ordering.push_back(4); |
| block_ordering.push_back(3); |
| |
| // Expected ordering |
| // [1, 2, 0, 3, 4, 5, 9, 6, 7, 8] |
| vector<int> expected_scalar_ordering; |
| expected_scalar_ordering.push_back(1); |
| expected_scalar_ordering.push_back(2); |
| expected_scalar_ordering.push_back(0); |
| expected_scalar_ordering.push_back(3); |
| expected_scalar_ordering.push_back(4); |
| expected_scalar_ordering.push_back(5); |
| expected_scalar_ordering.push_back(9); |
| expected_scalar_ordering.push_back(6); |
| expected_scalar_ordering.push_back(7); |
| expected_scalar_ordering.push_back(8); |
| |
| vector<int> scalar_ordering; |
| BlockOrderingToScalarOrdering(blocks, |
| block_ordering, |
| &scalar_ordering); |
| EXPECT_EQ(scalar_ordering.size(), expected_scalar_ordering.size()); |
| for (int i = 0; i < expected_scalar_ordering.size(); ++i) { |
| EXPECT_EQ(scalar_ordering[i], expected_scalar_ordering[i]); |
| } |
| } |
| |
| // Helper function to fill the sparsity pattern of a TripletSparseMatrix. |
| int FillBlock(const vector<int>& row_blocks, |
| const vector<int>& col_blocks, |
| const int row_block_id, |
| const int col_block_id, |
| int* rows, |
| int* cols) { |
| int row_pos = 0; |
| for (int i = 0; i < row_block_id; ++i) { |
| row_pos += row_blocks[i]; |
| } |
| |
| int col_pos = 0; |
| for (int i = 0; i < col_block_id; ++i) { |
| col_pos += col_blocks[i]; |
| } |
| |
| int offset = 0; |
| for (int r = 0; r < row_blocks[row_block_id]; ++r) { |
| for (int c = 0; c < col_blocks[col_block_id]; ++c, ++offset) { |
| rows[offset] = row_pos + r; |
| cols[offset] = col_pos + c; |
| } |
| } |
| return offset; |
| } |
| |
| TEST(_, ScalarMatrixToBlockMatrix) { |
| // Block sparsity. |
| // |
| // [1 2 3 2] |
| // [1] x x |
| // [2] x x |
| // [2] x x |
| // num_nonzeros = 1 + 3 + 4 + 4 + 1 + 2 = 15 |
| |
| vector<int> col_blocks; |
| col_blocks.push_back(1); |
| col_blocks.push_back(2); |
| col_blocks.push_back(3); |
| col_blocks.push_back(2); |
| |
| vector<int> row_blocks; |
| row_blocks.push_back(1); |
| row_blocks.push_back(2); |
| row_blocks.push_back(2); |
| |
| TripletSparseMatrix tsm(5, 8, 18); |
| int* rows = tsm.mutable_rows(); |
| int* cols = tsm.mutable_cols(); |
| std::fill(tsm.mutable_values(), tsm.mutable_values() + 18, 1.0); |
| int offset = 0; |
| |
| #define CERES_TEST_FILL_BLOCK(row_block_id, col_block_id) \ |
| offset += FillBlock(row_blocks, col_blocks, \ |
| row_block_id, col_block_id, \ |
| rows + offset, cols + offset); |
| |
| CERES_TEST_FILL_BLOCK(0, 0); |
| CERES_TEST_FILL_BLOCK(2, 0); |
| CERES_TEST_FILL_BLOCK(1, 1); |
| CERES_TEST_FILL_BLOCK(2, 1); |
| CERES_TEST_FILL_BLOCK(0, 2); |
| CERES_TEST_FILL_BLOCK(1, 3); |
| #undef CERES_TEST_FILL_BLOCK |
| |
| tsm.set_num_nonzeros(offset); |
| |
| SuiteSparse ss; |
| scoped_ptr<cholmod_sparse> ccsm(ss.CreateSparseMatrix(&tsm)); |
| |
| vector<int> expected_block_rows; |
| expected_block_rows.push_back(0); |
| expected_block_rows.push_back(2); |
| expected_block_rows.push_back(1); |
| expected_block_rows.push_back(2); |
| expected_block_rows.push_back(0); |
| expected_block_rows.push_back(1); |
| |
| vector<int> expected_block_cols; |
| expected_block_cols.push_back(0); |
| expected_block_cols.push_back(2); |
| expected_block_cols.push_back(4); |
| expected_block_cols.push_back(5); |
| expected_block_cols.push_back(6); |
| |
| vector<int> block_rows; |
| vector<int> block_cols; |
| CompressedColumnScalarMatrixToBlockMatrix( |
| reinterpret_cast<const int*>(ccsm->i), |
| reinterpret_cast<const int*>(ccsm->p), |
| row_blocks, |
| col_blocks, |
| &block_rows, |
| &block_cols); |
| |
| EXPECT_EQ(block_cols.size(), expected_block_cols.size()); |
| EXPECT_EQ(block_rows.size(), expected_block_rows.size()); |
| |
| for (int i = 0; i < expected_block_cols.size(); ++i) { |
| EXPECT_EQ(block_cols[i], expected_block_cols[i]); |
| } |
| |
| for (int i = 0; i < expected_block_rows.size(); ++i) { |
| EXPECT_EQ(block_rows[i], expected_block_rows[i]); |
| } |
| |
| ss.Free(ccsm.release()); |
| } |
| |
| class SolveUpperTriangularTest : public ::testing::Test { |
| protected: |
| void SetUp() { |
| cols.resize(5); |
| rows.resize(7); |
| values.resize(7); |
| |
| cols[0] = 0; |
| rows[0] = 0; |
| values[0] = 0.50754; |
| |
| cols[1] = 1; |
| rows[1] = 1; |
| values[1] = 0.80483; |
| |
| cols[2] = 2; |
| rows[2] = 1; |
| values[2] = 0.14120; |
| rows[3] = 2; |
| values[3] = 0.3; |
| |
| cols[3] = 4; |
| rows[4] = 0; |
| values[4] = 0.77696; |
| rows[5] = 1; |
| values[5] = 0.41860; |
| rows[6] = 3; |
| values[6] = 0.88979; |
| |
| cols[4] = 7; |
| } |
| |
| vector<int> cols; |
| vector<int> rows; |
| vector<double> values; |
| }; |
| |
| TEST_F(SolveUpperTriangularTest, SolveInPlace) { |
| double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; |
| const double expected[] = { -1.4706, -1.0962, 6.6667, 2.2477}; |
| |
| SolveUpperTriangularInPlace<int>(cols.size() - 1, |
| &rows[0], |
| &cols[0], |
| &values[0], |
| rhs_and_solution); |
| |
| for (int i = 0; i < 4; ++i) { |
| EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; |
| } |
| } |
| |
| TEST_F(SolveUpperTriangularTest, TransposeSolveInPlace) { |
| double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; |
| double expected[] = {1.970288, 1.242498, 6.081864, -0.057255}; |
| |
| SolveUpperTriangularTransposeInPlace<int>(cols.size() - 1, |
| &rows[0], |
| &cols[0], |
| &values[0], |
| rhs_and_solution); |
| |
| for (int i = 0; i < 4; ++i) { |
| EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; |
| } |
| } |
| |
| TEST_F(SolveUpperTriangularTest, RTRSolveWithSparseRHS) { |
| double solution[4]; |
| double expected[] = { 6.8420e+00, 1.0057e+00, -1.4907e-16, -1.9335e+00, |
| 1.0057e+00, 2.2275e+00, -1.9493e+00, -6.5693e-01, |
| -1.4907e-16, -1.9493e+00, 1.1111e+01, 9.7381e-17, |
| -1.9335e+00, -6.5693e-01, 9.7381e-17, 1.2631e+00 }; |
| |
| for (int i = 0; i < 4; ++i) { |
| SolveRTRWithSparseRHS<int>(cols.size() - 1, |
| &rows[0], |
| &cols[0], |
| &values[0], |
| i, |
| solution); |
| for (int j = 0; j < 4; ++j) { |
| EXPECT_NEAR(solution[j], expected[4 * i + j], 1e-3) << i; |
| } |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |