| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: jodebo_beck@gmx.de (Johannes Beck) | 
 | // | 
 |  | 
 | #ifndef CERES_PUBLIC_LINE_MANIFOLD_H_ | 
 | #define CERES_PUBLIC_LINE_MANIFOLD_H_ | 
 |  | 
 | #include <Eigen/Core> | 
 | #include <algorithm> | 
 | #include <array> | 
 | #include <memory> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/internal/disable_warnings.h" | 
 | #include "ceres/internal/export.h" | 
 | #include "ceres/internal/householder_vector.h" | 
 | #include "ceres/internal/sphere_manifold_functions.h" | 
 | #include "ceres/manifold.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | // This provides a manifold for lines, where the line is | 
 | // over-parameterized by an origin point and a direction vector. So the | 
 | // parameter vector size needs to be two times the ambient space dimension, | 
 | // where the first half is interpreted as the origin point and the second half | 
 | // as the direction. | 
 | // | 
 | // The plus operator for the line direction is the same as for the | 
 | // SphereManifold. The update of the origin point is | 
 | // perpendicular to the line direction before the update. | 
 | // | 
 | // This manifold is a special case of the affine Grassmannian | 
 | // manifold (see https://en.wikipedia.org/wiki/Affine_Grassmannian_(manifold)) | 
 | // for the case Graff_1(R^n). | 
 | // | 
 | // The class works with dynamic and static ambient space dimensions. If the | 
 | // ambient space dimensions is known at compile time use | 
 | // | 
 | //    LineManifold<3> manifold; | 
 | // | 
 | // If the ambient space dimensions is not known at compile time the template | 
 | // parameter needs to be set to ceres::DYNAMIC and the actual dimension needs | 
 | // to be provided as a constructor argument: | 
 | // | 
 | //    LineManifold<ceres::DYNAMIC> manifold(ambient_dim); | 
 | // | 
 | template <int AmbientSpaceDimension> | 
 | class LineManifold final : public Manifold { | 
 |  public: | 
 |   static_assert(AmbientSpaceDimension == DYNAMIC || AmbientSpaceDimension >= 2, | 
 |                 "The ambient space must be at least 2."); | 
 |   static_assert(ceres::DYNAMIC == Eigen::Dynamic, | 
 |                 "ceres::DYNAMIC needs to be the same as Eigen::Dynamic."); | 
 |  | 
 |   LineManifold(); | 
 |   explicit LineManifold(int size); | 
 |  | 
 |   int AmbientSize() const override { return 2 * size_; } | 
 |   int TangentSize() const override { return 2 * (size_ - 1); } | 
 |   bool Plus(const double* x, | 
 |             const double* delta, | 
 |             double* x_plus_delta) const override; | 
 |   bool PlusJacobian(const double* x, double* jacobian) const override; | 
 |   bool Minus(const double* y, | 
 |              const double* x, | 
 |              double* y_minus_x) const override; | 
 |   bool MinusJacobian(const double* x, double* jacobian) const override; | 
 |  | 
 |  private: | 
 |   static constexpr bool IsDynamic = (AmbientSpaceDimension == ceres::DYNAMIC); | 
 |   static constexpr int TangentSpaceDimension = | 
 |       IsDynamic ? ceres::DYNAMIC : AmbientSpaceDimension - 1; | 
 |  | 
 |   static constexpr int DAmbientSpaceDimension = | 
 |       IsDynamic ? ceres::DYNAMIC : 2 * AmbientSpaceDimension; | 
 |   static constexpr int DTangentSpaceDimension = | 
 |       IsDynamic ? ceres::DYNAMIC : 2 * TangentSpaceDimension; | 
 |  | 
 |   using AmbientVector = Eigen::Matrix<double, AmbientSpaceDimension, 1>; | 
 |   using TangentVector = Eigen::Matrix<double, TangentSpaceDimension, 1>; | 
 |   using MatrixPlusJacobian = Eigen::Matrix<double, | 
 |                                            DAmbientSpaceDimension, | 
 |                                            DTangentSpaceDimension, | 
 |                                            Eigen::RowMajor>; | 
 |   using MatrixMinusJacobian = Eigen::Matrix<double, | 
 |                                             DTangentSpaceDimension, | 
 |                                             DAmbientSpaceDimension, | 
 |                                             Eigen::RowMajor>; | 
 |  | 
 |   const int size_{AmbientSpaceDimension}; | 
 | }; | 
 |  | 
 | template <int AmbientSpaceDimension> | 
 | LineManifold<AmbientSpaceDimension>::LineManifold() | 
 |     : size_{AmbientSpaceDimension} { | 
 |   static_assert( | 
 |       AmbientSpaceDimension != Eigen::Dynamic, | 
 |       "The size is set to dynamic. Please call the constructor with a size."); | 
 | } | 
 |  | 
 | template <int AmbientSpaceDimension> | 
 | LineManifold<AmbientSpaceDimension>::LineManifold(int size) : size_{size} { | 
 |   if (AmbientSpaceDimension != Eigen::Dynamic) { | 
 |     CHECK_EQ(AmbientSpaceDimension, size) | 
 |         << "Specified size by template parameter differs from the supplied " | 
 |            "one."; | 
 |   } else { | 
 |     CHECK_GT(size_, 1) | 
 |         << "The size of the manifold needs to be greater than 1."; | 
 |   } | 
 | } | 
 |  | 
 | template <int AmbientSpaceDimension> | 
 | bool LineManifold<AmbientSpaceDimension>::Plus(const double* x_ptr, | 
 |                                                const double* delta_ptr, | 
 |                                                double* x_plus_delta_ptr) const { | 
 |   // We seek a box plus operator of the form | 
 |   // | 
 |   //   [o*, d*] = Plus([o, d], [delta_o, delta_d]) | 
 |   // | 
 |   // where o is the origin point, d is the direction vector, delta_o is | 
 |   // the delta of the origin point and delta_d the delta of the direction and | 
 |   // o* and d* is the updated origin point and direction. | 
 |   // | 
 |   // We separate the Plus operator into the origin point and directional part | 
 |   //   d* = Plus_d(d, delta_d) | 
 |   //   o* = Plus_o(o, d, delta_o) | 
 |   // | 
 |   // The direction update function Plus_d is the same as as the SphereManifold: | 
 |   // | 
 |   //   d* = H_{v(d)} [sinc(|delta_d|) delta_d, cos(|delta_d|)]^T | 
 |   // | 
 |   // where H is the householder matrix | 
 |   //   H_{v} = I - (2 / |v|^2) v v^T | 
 |   // and | 
 |   //   v(d) = d - sign(d_n) |d| e_n. | 
 |   // | 
 |   // The origin point update function Plus_o is defined as | 
 |   // | 
 |   //   o* = o + H_{v(d)} [delta_o, 0]^T. | 
 |  | 
 |   Eigen::Map<const AmbientVector> o(x_ptr, size_); | 
 |   Eigen::Map<const AmbientVector> d(x_ptr + size_, size_); | 
 |  | 
 |   Eigen::Map<const TangentVector> delta_o(delta_ptr, size_ - 1); | 
 |   Eigen::Map<const TangentVector> delta_d(delta_ptr + size_ - 1, size_ - 1); | 
 |   Eigen::Map<AmbientVector> o_plus_delta(x_plus_delta_ptr, size_); | 
 |   Eigen::Map<AmbientVector> d_plus_delta(x_plus_delta_ptr + size_, size_); | 
 |  | 
 |   const double norm_delta_d = delta_d.norm(); | 
 |  | 
 |   o_plus_delta = o; | 
 |  | 
 |   // Shortcut for zero delta direction. | 
 |   if (norm_delta_d == 0.0) { | 
 |     d_plus_delta = d; | 
 |  | 
 |     if (delta_o.isZero(0.0)) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // Calculate the householder transformation which is needed for f_d and f_o. | 
 |   AmbientVector v(size_); | 
 |   double beta; | 
 |  | 
 |   // NOTE: The explicit template arguments are needed here because | 
 |   // ComputeHouseholderVector is templated and some versions of MSVC | 
 |   // have trouble deducing the type of v automatically. | 
 |   internal::ComputeHouseholderVector<Eigen::Map<const AmbientVector>, | 
 |                                      double, | 
 |                                      AmbientSpaceDimension>(d, &v, &beta); | 
 |  | 
 |   if (norm_delta_d != 0.0) { | 
 |     internal::ComputeSphereManifoldPlus( | 
 |         v, beta, d, delta_d, norm_delta_d, &d_plus_delta); | 
 |   } | 
 |  | 
 |   // The null space is in the direction of the line, so the tangent space is | 
 |   // perpendicular to the line direction. This is achieved by using the | 
 |   // householder matrix of the direction and allow only movements | 
 |   // perpendicular to e_n. | 
 |   AmbientVector y(size_); | 
 |   y << delta_o, 0; | 
 |   o_plus_delta += internal::ApplyHouseholderVector(y, v, beta); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | template <int AmbientSpaceDimension> | 
 | bool LineManifold<AmbientSpaceDimension>::PlusJacobian( | 
 |     const double* x_ptr, double* jacobian_ptr) const { | 
 |   Eigen::Map<const AmbientVector> d(x_ptr + size_, size_); | 
 |   Eigen::Map<MatrixPlusJacobian> jacobian( | 
 |       jacobian_ptr, 2 * size_, 2 * (size_ - 1)); | 
 |  | 
 |   // Clear the Jacobian as only half of the matrix is not zero. | 
 |   jacobian.setZero(); | 
 |  | 
 |   auto jacobian_d = | 
 |       jacobian | 
 |           .template topLeftCorner<AmbientSpaceDimension, TangentSpaceDimension>( | 
 |               size_, size_ - 1); | 
 |   auto jacobian_o = jacobian.template bottomRightCorner<AmbientSpaceDimension, | 
 |                                                         TangentSpaceDimension>( | 
 |       size_, size_ - 1); | 
 |   internal::ComputeSphereManifoldPlusJacobian(d, &jacobian_d); | 
 |   jacobian_o = jacobian_d; | 
 |   return true; | 
 | } | 
 |  | 
 | template <int AmbientSpaceDimension> | 
 | bool LineManifold<AmbientSpaceDimension>::Minus(const double* y_ptr, | 
 |                                                 const double* x_ptr, | 
 |                                                 double* y_minus_x) const { | 
 |   Eigen::Map<const AmbientVector> y_o(y_ptr, size_); | 
 |   Eigen::Map<const AmbientVector> y_d(y_ptr + size_, size_); | 
 |   Eigen::Map<const AmbientVector> x_o(x_ptr, size_); | 
 |   Eigen::Map<const AmbientVector> x_d(x_ptr + size_, size_); | 
 |  | 
 |   Eigen::Map<TangentVector> y_minus_x_o(y_minus_x, size_ - 1); | 
 |   Eigen::Map<TangentVector> y_minus_x_d(y_minus_x + size_ - 1, size_ - 1); | 
 |  | 
 |   AmbientVector v(size_); | 
 |   double beta; | 
 |  | 
 |   // NOTE: The explicit template arguments are needed here because | 
 |   // ComputeHouseholderVector is templated and some versions of MSVC | 
 |   // have trouble deducing the type of v automatically. | 
 |   internal::ComputeHouseholderVector<Eigen::Map<const AmbientVector>, | 
 |                                      double, | 
 |                                      AmbientSpaceDimension>(x_d, &v, &beta); | 
 |  | 
 |   internal::ComputeSphereManifoldMinus(v, beta, x_d, y_d, &y_minus_x_d); | 
 |  | 
 |   AmbientVector delta_o = y_o - x_o; | 
 |   const AmbientVector h_delta_o = | 
 |       internal::ApplyHouseholderVector(delta_o, v, beta); | 
 |   y_minus_x_o = h_delta_o.template head<TangentSpaceDimension>(size_ - 1); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | template <int AmbientSpaceDimension> | 
 | bool LineManifold<AmbientSpaceDimension>::MinusJacobian( | 
 |     const double* x_ptr, double* jacobian_ptr) const { | 
 |   Eigen::Map<const AmbientVector> d(x_ptr + size_, size_); | 
 |   Eigen::Map<MatrixMinusJacobian> jacobian( | 
 |       jacobian_ptr, 2 * (size_ - 1), 2 * size_); | 
 |  | 
 |   // Clear the Jacobian as only half of the matrix is not zero. | 
 |   jacobian.setZero(); | 
 |  | 
 |   auto jacobian_d = | 
 |       jacobian | 
 |           .template topLeftCorner<TangentSpaceDimension, AmbientSpaceDimension>( | 
 |               size_ - 1, size_); | 
 |   auto jacobian_o = jacobian.template bottomRightCorner<TangentSpaceDimension, | 
 |                                                         AmbientSpaceDimension>( | 
 |       size_ - 1, size_); | 
 |   internal::ComputeSphereManifoldMinusJacobian(d, &jacobian_d); | 
 |   jacobian_o = jacobian_d; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | // clang-format off | 
 | #include "ceres/internal/reenable_warnings.h" | 
 | // clang-format on | 
 |  | 
 | #endif  // CERES_PUBLIC_LINE_MANIFOLD_H_ |