| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/block_random_access_sparse_matrix.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <memory> | 
 | #include <set> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/internal/export.h" | 
 | #include "ceres/parallel_vector_ops.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix( | 
 |     const std::vector<Block>& blocks, | 
 |     const std::set<std::pair<int, int>>& block_pairs, | 
 |     ContextImpl* context, | 
 |     int num_threads) | 
 |     : blocks_(blocks), context_(context), num_threads_(num_threads) { | 
 |   CHECK_LE(blocks.size(), std::numeric_limits<std::int32_t>::max()); | 
 |  | 
 |   const int num_cols = NumScalarEntries(blocks); | 
 |   const int num_blocks = blocks.size(); | 
 |  | 
 |   std::vector<int> num_cells_at_row(num_blocks); | 
 |   for (auto& p : block_pairs) { | 
 |     ++num_cells_at_row[p.first]; | 
 |   } | 
 |   auto block_structure_ = new CompressedRowBlockStructure; | 
 |   block_structure_->cols = blocks; | 
 |   block_structure_->rows.resize(num_blocks); | 
 |   auto p = block_pairs.begin(); | 
 |   int num_nonzeros = 0; | 
 |   // Pairs of block indices are sorted lexicographically, thus pairs | 
 |   // corresponding to a single row-block are stored in segments of index pairs | 
 |   // with constant row-block index and increasing column-block index. | 
 |   // CompressedRowBlockStructure is created by traversing block_pairs set. | 
 |   for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) { | 
 |     auto& row = block_structure_->rows[row_block_id]; | 
 |     row.block = blocks[row_block_id]; | 
 |     row.cells.reserve(num_cells_at_row[row_block_id]); | 
 |     const int row_block_size = blocks[row_block_id].size; | 
 |     // Process all index pairs corresponding to the current row block. Because | 
 |     // index pairs are sorted lexicographically, cells are being appended to the | 
 |     // current row-block till the first change in row-block index | 
 |     for (; p != block_pairs.end() && row_block_id == p->first; ++p) { | 
 |       const int col_block_id = p->second; | 
 |       row.cells.emplace_back(col_block_id, num_nonzeros); | 
 |       num_nonzeros += row_block_size * blocks[col_block_id].size; | 
 |     } | 
 |   } | 
 |   bsm_ = std::make_unique<BlockSparseMatrix>(block_structure_); | 
 |   VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] " | 
 |           << num_nonzeros; | 
 |   double* values = bsm_->mutable_values(); | 
 |   for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) { | 
 |     const auto& cells = block_structure_->rows[row_block_id].cells; | 
 |     for (auto& c : cells) { | 
 |       const int col_block_id = c.block_id; | 
 |       double* const data = values + c.position; | 
 |       layout_[IntPairToInt64(row_block_id, col_block_id)] = | 
 |           std::make_unique<CellInfo>(data); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id, | 
 |                                                  int col_block_id, | 
 |                                                  int* row, | 
 |                                                  int* col, | 
 |                                                  int* row_stride, | 
 |                                                  int* col_stride) { | 
 |   const auto it = layout_.find(IntPairToInt64(row_block_id, col_block_id)); | 
 |   if (it == layout_.end()) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Each cell is stored contiguously as its own little dense matrix. | 
 |   *row = 0; | 
 |   *col = 0; | 
 |   *row_stride = blocks_[row_block_id].size; | 
 |   *col_stride = blocks_[col_block_id].size; | 
 |   return it->second.get(); | 
 | } | 
 |  | 
 | // Assume that the user does not hold any locks on any cell blocks | 
 | // when they are calling SetZero. | 
 | void BlockRandomAccessSparseMatrix::SetZero() { | 
 |   bsm_->SetZero(context_, num_threads_); | 
 | } | 
 |  | 
 | void BlockRandomAccessSparseMatrix::SymmetricRightMultiplyAndAccumulate( | 
 |     const double* x, double* y) const { | 
 |   const auto bs = bsm_->block_structure(); | 
 |   const auto values = bsm_->values(); | 
 |   const int num_blocks = blocks_.size(); | 
 |  | 
 |   for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) { | 
 |     const auto& row_block = bs->rows[row_block_id]; | 
 |     const int row_block_size = row_block.block.size; | 
 |     const int row_block_pos = row_block.block.position; | 
 |  | 
 |     for (auto& c : row_block.cells) { | 
 |       const int col_block_id = c.block_id; | 
 |       const int col_block_size = blocks_[col_block_id].size; | 
 |       const int col_block_pos = blocks_[col_block_id].position; | 
 |  | 
 |       MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |           values + c.position, | 
 |           row_block_size, | 
 |           col_block_size, | 
 |           x + col_block_pos, | 
 |           y + row_block_pos); | 
 |       if (col_block_id == row_block_id) { | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Since the matrix is symmetric, but only the upper triangular | 
 |       // part is stored, if the block being accessed is not a diagonal | 
 |       // block, then use the same block to do the corresponding lower | 
 |       // triangular multiply also | 
 |       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |           values + c.position, | 
 |           row_block_size, | 
 |           col_block_size, | 
 |           x + row_block_pos, | 
 |           y + col_block_pos); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |