|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: richie.stebbing@gmail.com (Richard Stebbing) | 
|  | // | 
|  | // This fits points randomly distributed on an ellipse with an approximate | 
|  | // line segment contour. This is done by jointly optimizing the control points | 
|  | // of the line segment contour along with the preimage positions for the data | 
|  | // points. The purpose of this example is to show an example use case for | 
|  | // dynamic_sparsity, and how it can benefit problems which are numerically | 
|  | // dense but dynamically sparse. | 
|  |  | 
|  | #include <cmath> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/ceres.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | // Data generated with the following Python code. | 
|  | //   import numpy as np | 
|  | //   np.random.seed(1337) | 
|  | //   t = np.linspace(0.0, 2.0 * np.pi, 212, endpoint=False) | 
|  | //   t += 2.0 * np.pi * 0.01 * np.random.randn(t.size) | 
|  | //   theta = np.deg2rad(15) | 
|  | //   a, b = np.cos(theta), np.sin(theta) | 
|  | //   R = np.array([[a, -b], | 
|  | //                 [b, a]]) | 
|  | //   Y = np.dot(np.c_[4.0 * np.cos(t), np.sin(t)], R.T) | 
|  |  | 
|  | const int kYRows = 212; | 
|  | const int kYCols = 2; | 
|  | // clang-format off | 
|  | const double kYData[kYRows * kYCols] = { | 
|  | +3.871364e+00, +9.916027e-01, | 
|  | +3.864003e+00, +1.034148e+00, | 
|  | +3.850651e+00, +1.072202e+00, | 
|  | +3.868350e+00, +1.014408e+00, | 
|  | +3.796381e+00, +1.153021e+00, | 
|  | +3.857138e+00, +1.056102e+00, | 
|  | +3.787532e+00, +1.162215e+00, | 
|  | +3.704477e+00, +1.227272e+00, | 
|  | +3.564711e+00, +1.294959e+00, | 
|  | +3.754363e+00, +1.191948e+00, | 
|  | +3.482098e+00, +1.322725e+00, | 
|  | +3.602777e+00, +1.279658e+00, | 
|  | +3.585433e+00, +1.286858e+00, | 
|  | +3.347505e+00, +1.356415e+00, | 
|  | +3.220855e+00, +1.378914e+00, | 
|  | +3.558808e+00, +1.297174e+00, | 
|  | +3.403618e+00, +1.343809e+00, | 
|  | +3.179828e+00, +1.384721e+00, | 
|  | +3.054789e+00, +1.398759e+00, | 
|  | +3.294153e+00, +1.366808e+00, | 
|  | +3.247312e+00, +1.374813e+00, | 
|  | +2.988547e+00, +1.404247e+00, | 
|  | +3.114508e+00, +1.392698e+00, | 
|  | +2.899226e+00, +1.409802e+00, | 
|  | +2.533256e+00, +1.414778e+00, | 
|  | +2.654773e+00, +1.415909e+00, | 
|  | +2.565100e+00, +1.415313e+00, | 
|  | +2.976456e+00, +1.405118e+00, | 
|  | +2.484200e+00, +1.413640e+00, | 
|  | +2.324751e+00, +1.407476e+00, | 
|  | +1.930468e+00, +1.378221e+00, | 
|  | +2.329017e+00, +1.407688e+00, | 
|  | +1.760640e+00, +1.360319e+00, | 
|  | +2.147375e+00, +1.396603e+00, | 
|  | +1.741989e+00, +1.358178e+00, | 
|  | +1.743859e+00, +1.358394e+00, | 
|  | +1.557372e+00, +1.335208e+00, | 
|  | +1.280551e+00, +1.295087e+00, | 
|  | +1.429880e+00, +1.317546e+00, | 
|  | +1.213485e+00, +1.284400e+00, | 
|  | +9.168172e-01, +1.232870e+00, | 
|  | +1.311141e+00, +1.299839e+00, | 
|  | +1.231969e+00, +1.287382e+00, | 
|  | +7.453773e-01, +1.200049e+00, | 
|  | +6.151587e-01, +1.173683e+00, | 
|  | +5.935666e-01, +1.169193e+00, | 
|  | +2.538707e-01, +1.094227e+00, | 
|  | +6.806136e-01, +1.187089e+00, | 
|  | +2.805447e-01, +1.100405e+00, | 
|  | +6.184807e-01, +1.174371e+00, | 
|  | +1.170550e-01, +1.061762e+00, | 
|  | +2.890507e-01, +1.102365e+00, | 
|  | +3.834234e-01, +1.123772e+00, | 
|  | +3.980161e-04, +1.033061e+00, | 
|  | -3.651680e-01, +9.370367e-01, | 
|  | -8.386351e-01, +7.987201e-01, | 
|  | -8.105704e-01, +8.073702e-01, | 
|  | -8.735139e-01, +7.878886e-01, | 
|  | -9.913836e-01, +7.506100e-01, | 
|  | -8.784011e-01, +7.863636e-01, | 
|  | -1.181440e+00, +6.882566e-01, | 
|  | -1.229556e+00, +6.720191e-01, | 
|  | -1.035839e+00, +7.362765e-01, | 
|  | -8.031520e-01, +8.096470e-01, | 
|  | -1.539136e+00, +5.629549e-01, | 
|  | -1.755423e+00, +4.817306e-01, | 
|  | -1.337589e+00, +6.348763e-01, | 
|  | -1.836966e+00, +4.499485e-01, | 
|  | -1.913367e+00, +4.195617e-01, | 
|  | -2.126467e+00, +3.314900e-01, | 
|  | -1.927625e+00, +4.138238e-01, | 
|  | -2.339862e+00, +2.379074e-01, | 
|  | -1.881736e+00, +4.322152e-01, | 
|  | -2.116753e+00, +3.356163e-01, | 
|  | -2.255733e+00, +2.754930e-01, | 
|  | -2.555834e+00, +1.368473e-01, | 
|  | -2.770277e+00, +2.895711e-02, | 
|  | -2.563376e+00, +1.331890e-01, | 
|  | -2.826715e+00, -9.000818e-04, | 
|  | -2.978191e+00, -8.457804e-02, | 
|  | -3.115855e+00, -1.658786e-01, | 
|  | -2.982049e+00, -8.678322e-02, | 
|  | -3.307892e+00, -2.902083e-01, | 
|  | -3.038346e+00, -1.194222e-01, | 
|  | -3.190057e+00, -2.122060e-01, | 
|  | -3.279086e+00, -2.705777e-01, | 
|  | -3.322028e+00, -2.999889e-01, | 
|  | -3.122576e+00, -1.699965e-01, | 
|  | -3.551973e+00, -4.768674e-01, | 
|  | -3.581866e+00, -5.032175e-01, | 
|  | -3.497799e+00, -4.315203e-01, | 
|  | -3.565384e+00, -4.885602e-01, | 
|  | -3.699493e+00, -6.199815e-01, | 
|  | -3.585166e+00, -5.061925e-01, | 
|  | -3.758914e+00, -6.918275e-01, | 
|  | -3.741104e+00, -6.689131e-01, | 
|  | -3.688331e+00, -6.077239e-01, | 
|  | -3.810425e+00, -7.689015e-01, | 
|  | -3.791829e+00, -7.386911e-01, | 
|  | -3.789951e+00, -7.358189e-01, | 
|  | -3.823100e+00, -7.918398e-01, | 
|  | -3.857021e+00, -8.727074e-01, | 
|  | -3.858250e+00, -8.767645e-01, | 
|  | -3.872100e+00, -9.563174e-01, | 
|  | -3.864397e+00, -1.032630e+00, | 
|  | -3.846230e+00, -1.081669e+00, | 
|  | -3.834799e+00, -1.102536e+00, | 
|  | -3.866684e+00, -1.022901e+00, | 
|  | -3.808643e+00, -1.139084e+00, | 
|  | -3.868840e+00, -1.011569e+00, | 
|  | -3.791071e+00, -1.158615e+00, | 
|  | -3.797999e+00, -1.151267e+00, | 
|  | -3.696278e+00, -1.232314e+00, | 
|  | -3.779007e+00, -1.170504e+00, | 
|  | -3.622855e+00, -1.270793e+00, | 
|  | -3.647249e+00, -1.259166e+00, | 
|  | -3.655412e+00, -1.255042e+00, | 
|  | -3.573218e+00, -1.291696e+00, | 
|  | -3.638019e+00, -1.263684e+00, | 
|  | -3.498409e+00, -1.317750e+00, | 
|  | -3.304143e+00, -1.364970e+00, | 
|  | -3.183001e+00, -1.384295e+00, | 
|  | -3.202456e+00, -1.381599e+00, | 
|  | -3.244063e+00, -1.375332e+00, | 
|  | -3.233308e+00, -1.377019e+00, | 
|  | -3.060112e+00, -1.398264e+00, | 
|  | -3.078187e+00, -1.396517e+00, | 
|  | -2.689594e+00, -1.415761e+00, | 
|  | -2.947662e+00, -1.407039e+00, | 
|  | -2.854490e+00, -1.411860e+00, | 
|  | -2.660499e+00, -1.415900e+00, | 
|  | -2.875955e+00, -1.410930e+00, | 
|  | -2.675385e+00, -1.415848e+00, | 
|  | -2.813155e+00, -1.413363e+00, | 
|  | -2.417673e+00, -1.411512e+00, | 
|  | -2.725461e+00, -1.415373e+00, | 
|  | -2.148334e+00, -1.396672e+00, | 
|  | -2.108972e+00, -1.393738e+00, | 
|  | -2.029905e+00, -1.387302e+00, | 
|  | -2.046214e+00, -1.388687e+00, | 
|  | -2.057402e+00, -1.389621e+00, | 
|  | -1.650250e+00, -1.347160e+00, | 
|  | -1.806764e+00, -1.365469e+00, | 
|  | -1.206973e+00, -1.283343e+00, | 
|  | -8.029259e-01, -1.211308e+00, | 
|  | -1.229551e+00, -1.286993e+00, | 
|  | -1.101507e+00, -1.265754e+00, | 
|  | -9.110645e-01, -1.231804e+00, | 
|  | -1.110046e+00, -1.267211e+00, | 
|  | -8.465274e-01, -1.219677e+00, | 
|  | -7.594163e-01, -1.202818e+00, | 
|  | -8.023823e-01, -1.211203e+00, | 
|  | -3.732519e-01, -1.121494e+00, | 
|  | -1.918373e-01, -1.079668e+00, | 
|  | -4.671988e-01, -1.142253e+00, | 
|  | -4.033645e-01, -1.128215e+00, | 
|  | -1.920740e-01, -1.079724e+00, | 
|  | -3.022157e-01, -1.105389e+00, | 
|  | -1.652831e-01, -1.073354e+00, | 
|  | +4.671625e-01, -9.085886e-01, | 
|  | +5.940178e-01, -8.721832e-01, | 
|  | +3.147557e-01, -9.508290e-01, | 
|  | +6.383631e-01, -8.591867e-01, | 
|  | +9.888923e-01, -7.514088e-01, | 
|  | +7.076339e-01, -8.386023e-01, | 
|  | +1.326682e+00, -6.386698e-01, | 
|  | +1.149834e+00, -6.988221e-01, | 
|  | +1.257742e+00, -6.624207e-01, | 
|  | +1.492352e+00, -5.799632e-01, | 
|  | +1.595574e+00, -5.421766e-01, | 
|  | +1.240173e+00, -6.684113e-01, | 
|  | +1.706612e+00, -5.004442e-01, | 
|  | +1.873984e+00, -4.353002e-01, | 
|  | +1.985633e+00, -3.902561e-01, | 
|  | +1.722880e+00, -4.942329e-01, | 
|  | +2.095182e+00, -3.447402e-01, | 
|  | +2.018118e+00, -3.768991e-01, | 
|  | +2.422702e+00, -1.999563e-01, | 
|  | +2.370611e+00, -2.239326e-01, | 
|  | +2.152154e+00, -3.205250e-01, | 
|  | +2.525121e+00, -1.516499e-01, | 
|  | +2.422116e+00, -2.002280e-01, | 
|  | +2.842806e+00, +9.536372e-03, | 
|  | +3.030128e+00, +1.146027e-01, | 
|  | +2.888424e+00, +3.433444e-02, | 
|  | +2.991609e+00, +9.226409e-02, | 
|  | +2.924807e+00, +5.445844e-02, | 
|  | +3.007772e+00, +1.015875e-01, | 
|  | +2.781973e+00, -2.282382e-02, | 
|  | +3.164737e+00, +1.961781e-01, | 
|  | +3.237671e+00, +2.430139e-01, | 
|  | +3.046123e+00, +1.240014e-01, | 
|  | +3.414834e+00, +3.669060e-01, | 
|  | +3.436591e+00, +3.833600e-01, | 
|  | +3.626207e+00, +5.444311e-01, | 
|  | +3.223325e+00, +2.336361e-01, | 
|  | +3.511963e+00, +4.431060e-01, | 
|  | +3.698380e+00, +6.187442e-01, | 
|  | +3.670244e+00, +5.884943e-01, | 
|  | +3.558833e+00, +4.828230e-01, | 
|  | +3.661807e+00, +5.797689e-01, | 
|  | +3.767261e+00, +7.030893e-01, | 
|  | +3.801065e+00, +7.532650e-01, | 
|  | +3.828523e+00, +8.024454e-01, | 
|  | +3.840719e+00, +8.287032e-01, | 
|  | +3.848748e+00, +8.485921e-01, | 
|  | +3.865801e+00, +9.066551e-01, | 
|  | +3.870983e+00, +9.404873e-01, | 
|  | +3.870263e+00, +1.001884e+00, | 
|  | +3.864462e+00, +1.032374e+00, | 
|  | +3.870542e+00, +9.996121e-01, | 
|  | +3.865424e+00, +1.028474e+00 | 
|  | }; | 
|  | // clang-format on | 
|  | ceres::ConstMatrixRef kY(kYData, kYRows, kYCols); | 
|  |  | 
|  | class PointToLineSegmentContourCostFunction : public ceres::CostFunction { | 
|  | public: | 
|  | PointToLineSegmentContourCostFunction(const int num_segments, | 
|  | const Eigen::Vector2d& y) | 
|  | : num_segments_(num_segments), y_(y) { | 
|  | // The first parameter is the preimage position. | 
|  | mutable_parameter_block_sizes()->push_back(1); | 
|  | // The next parameters are the control points for the line segment contour. | 
|  | for (int i = 0; i < num_segments_; ++i) { | 
|  | mutable_parameter_block_sizes()->push_back(2); | 
|  | } | 
|  | set_num_residuals(2); | 
|  | } | 
|  |  | 
|  | virtual bool Evaluate(const double* const* x, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | // Convert the preimage position `t` into a segment index `i0` and the | 
|  | // line segment interpolation parameter `u`. `i1` is the index of the next | 
|  | // control point. | 
|  | const double t = ModuloNumSegments(*x[0]); | 
|  | CHECK_GE(t, 0.0); | 
|  | CHECK_LT(t, num_segments_); | 
|  | const int i0 = floor(t), i1 = (i0 + 1) % num_segments_; | 
|  | const double u = t - i0; | 
|  |  | 
|  | // Linearly interpolate between control points `i0` and `i1`. | 
|  | residuals[0] = y_[0] - ((1.0 - u) * x[1 + i0][0] + u * x[1 + i1][0]); | 
|  | residuals[1] = y_[1] - ((1.0 - u) * x[1 + i0][1] + u * x[1 + i1][1]); | 
|  |  | 
|  | if (jacobians == NULL) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (jacobians[0] != NULL) { | 
|  | jacobians[0][0] = x[1 + i0][0] - x[1 + i1][0]; | 
|  | jacobians[0][1] = x[1 + i0][1] - x[1 + i1][1]; | 
|  | } | 
|  | for (int i = 0; i < num_segments_; ++i) { | 
|  | if (jacobians[i + 1] != NULL) { | 
|  | ceres::MatrixRef(jacobians[i + 1], 2, 2).setZero(); | 
|  | if (i == i0) { | 
|  | jacobians[i + 1][0] = -(1.0 - u); | 
|  | jacobians[i + 1][3] = -(1.0 - u); | 
|  | } else if (i == i1) { | 
|  | jacobians[i + 1][0] = -u; | 
|  | jacobians[i + 1][3] = -u; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ceres::CostFunction* Create(const int num_segments, | 
|  | const Eigen::Vector2d& y) { | 
|  | return new PointToLineSegmentContourCostFunction(num_segments, y); | 
|  | } | 
|  |  | 
|  | private: | 
|  | inline double ModuloNumSegments(const double t) const { | 
|  | return t - num_segments_ * floor(t / num_segments_); | 
|  | } | 
|  |  | 
|  | const int num_segments_; | 
|  | const Eigen::Vector2d y_; | 
|  | }; | 
|  |  | 
|  | class EuclideanDistanceFunctor { | 
|  | public: | 
|  | explicit EuclideanDistanceFunctor(const double& sqrt_weight) | 
|  | : sqrt_weight_(sqrt_weight) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, const T* x1, T* residuals) const { | 
|  | residuals[0] = sqrt_weight_ * (x0[0] - x1[0]); | 
|  | residuals[1] = sqrt_weight_ * (x0[1] - x1[1]); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ceres::CostFunction* Create(const double sqrt_weight) { | 
|  | return new ceres::AutoDiffCostFunction<EuclideanDistanceFunctor, 2, 2, 2>( | 
|  | new EuclideanDistanceFunctor(sqrt_weight)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const double sqrt_weight_; | 
|  | }; | 
|  |  | 
|  | static bool SolveWithFullReport(ceres::Solver::Options options, | 
|  | ceres::Problem* problem, | 
|  | bool dynamic_sparsity) { | 
|  | options.dynamic_sparsity = dynamic_sparsity; | 
|  |  | 
|  | ceres::Solver::Summary summary; | 
|  | ceres::Solve(options, problem, &summary); | 
|  |  | 
|  | std::cout << "####################" << std::endl; | 
|  | std::cout << "dynamic_sparsity = " << dynamic_sparsity << std::endl; | 
|  | std::cout << "####################" << std::endl; | 
|  | std::cout << summary.FullReport() << std::endl; | 
|  |  | 
|  | return summary.termination_type == ceres::CONVERGENCE; | 
|  | } | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | google::InitGoogleLogging(argv[0]); | 
|  |  | 
|  | // Problem configuration. | 
|  | const int num_segments = 151; | 
|  | const double regularization_weight = 1e-2; | 
|  |  | 
|  | // Eigen::MatrixXd is column major so we define our own MatrixXd which is | 
|  | // row major. Eigen::VectorXd can be used directly. | 
|  | typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> | 
|  | MatrixXd; | 
|  | using Eigen::VectorXd; | 
|  |  | 
|  | // `X` is the matrix of control points which make up the contour of line | 
|  | // segments. The number of control points is equal to the number of line | 
|  | // segments because the contour is closed. | 
|  | // | 
|  | // Initialize `X` to points on the unit circle. | 
|  | VectorXd w(num_segments + 1); | 
|  | w.setLinSpaced(num_segments + 1, 0.0, 2.0 * M_PI); | 
|  | w.conservativeResize(num_segments); | 
|  | MatrixXd X(num_segments, 2); | 
|  | X.col(0) = w.array().cos(); | 
|  | X.col(1) = w.array().sin(); | 
|  |  | 
|  | // Each data point has an associated preimage position on the line segment | 
|  | // contour. For each data point we initialize the preimage positions to | 
|  | // the index of the closest control point. | 
|  | const int num_observations = kY.rows(); | 
|  | VectorXd t(num_observations); | 
|  | for (int i = 0; i < num_observations; ++i) { | 
|  | (X.rowwise() - kY.row(i)).rowwise().squaredNorm().minCoeff(&t[i]); | 
|  | } | 
|  |  | 
|  | ceres::Problem problem; | 
|  |  | 
|  | // For each data point add a residual which measures its distance to its | 
|  | // corresponding position on the line segment contour. | 
|  | std::vector<double*> parameter_blocks(1 + num_segments); | 
|  | parameter_blocks[0] = NULL; | 
|  | for (int i = 0; i < num_segments; ++i) { | 
|  | parameter_blocks[i + 1] = X.data() + 2 * i; | 
|  | } | 
|  | for (int i = 0; i < num_observations; ++i) { | 
|  | parameter_blocks[0] = &t[i]; | 
|  | problem.AddResidualBlock( | 
|  | PointToLineSegmentContourCostFunction::Create(num_segments, kY.row(i)), | 
|  | NULL, | 
|  | parameter_blocks); | 
|  | } | 
|  |  | 
|  | // Add regularization to minimize the length of the line segment contour. | 
|  | for (int i = 0; i < num_segments; ++i) { | 
|  | problem.AddResidualBlock( | 
|  | EuclideanDistanceFunctor::Create(sqrt(regularization_weight)), | 
|  | NULL, | 
|  | X.data() + 2 * i, | 
|  | X.data() + 2 * ((i + 1) % num_segments)); | 
|  | } | 
|  |  | 
|  | ceres::Solver::Options options; | 
|  | options.max_num_iterations = 100; | 
|  | options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; | 
|  |  | 
|  | // First, solve `X` and `t` jointly with dynamic_sparsity = true. | 
|  | MatrixXd X0 = X; | 
|  | VectorXd t0 = t; | 
|  | CHECK(SolveWithFullReport(options, &problem, true)); | 
|  |  | 
|  | // Second, solve with dynamic_sparsity = false. | 
|  | X = X0; | 
|  | t = t0; | 
|  | CHECK(SolveWithFullReport(options, &problem, false)); | 
|  |  | 
|  | return 0; | 
|  | } |