|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_ | 
|  | #define CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_ | 
|  |  | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/block_random_access_diagonal_matrix.h" | 
|  | #include "ceres/block_random_access_matrix.h" | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/block_structure.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/schur_eliminator.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | #ifdef CERES_USE_EIGEN_SPARSE | 
|  | #include "Eigen/OrderingMethods" | 
|  | #include "Eigen/SparseCholesky" | 
|  | #endif | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | class BlockSparseMatrix; | 
|  | class SparseCholesky; | 
|  |  | 
|  | // Base class for Schur complement based linear least squares | 
|  | // solvers. It assumes that the input linear system Ax = b can be | 
|  | // partitioned into | 
|  | // | 
|  | //  E y + F z = b | 
|  | // | 
|  | // Where x = [y;z] is a partition of the variables.  The paritioning | 
|  | // of the variables is such that, E'E is a block diagonal | 
|  | // matrix. Further, the rows of A are ordered so that for every | 
|  | // variable block in y, all the rows containing that variable block | 
|  | // occur as a vertically contiguous block. i.e the matrix A looks like | 
|  | // | 
|  | //              E                 F | 
|  | //  A = [ y1   0   0   0 |  z1    0    0   0    z5] | 
|  | //      [ y1   0   0   0 |  z1   z2    0   0     0] | 
|  | //      [  0  y2   0   0 |   0    0   z3   0     0] | 
|  | //      [  0   0  y3   0 |  z1   z2   z3  z4    z5] | 
|  | //      [  0   0  y3   0 |  z1    0    0   0    z5] | 
|  | //      [  0   0   0  y4 |   0    0    0   0    z5] | 
|  | //      [  0   0   0  y4 |   0   z2    0   0     0] | 
|  | //      [  0   0   0  y4 |   0    0    0   0     0] | 
|  | //      [  0   0   0   0 |  z1    0    0   0     0] | 
|  | //      [  0   0   0   0 |   0    0   z3  z4    z5] | 
|  | // | 
|  | // This structure should be reflected in the corresponding | 
|  | // CompressedRowBlockStructure object associated with A. The linear | 
|  | // system Ax = b should either be well posed or the array D below | 
|  | // should be non-null and the diagonal matrix corresponding to it | 
|  | // should be non-singular. | 
|  | // | 
|  | // SchurComplementSolver has two sub-classes. | 
|  | // | 
|  | // DenseSchurComplementSolver: For problems where the Schur complement | 
|  | // matrix is small and dense, or if CHOLMOD/SuiteSparse is not | 
|  | // installed. For structure from motion problems, this is solver can | 
|  | // be used for problems with upto a few hundred cameras. | 
|  | // | 
|  | // SparseSchurComplementSolver: For problems where the Schur | 
|  | // complement matrix is large and sparse. It requires that Ceres be | 
|  | // build with at least one sparse linear algebra library, as it | 
|  | // computes a sparse Cholesky factorization of the Schur complement. | 
|  | // | 
|  | // This solver can be used for solving structure from motion problems | 
|  | // with tens of thousands of cameras, though depending on the exact | 
|  | // sparsity structure, it maybe better to use an iterative solver. | 
|  | // | 
|  | // The two solvers can be instantiated by calling | 
|  | // LinearSolver::CreateLinearSolver with LinearSolver::Options::type | 
|  | // set to DENSE_SCHUR and SPARSE_SCHUR | 
|  | // respectively. LinearSolver::Options::elimination_groups[0] should | 
|  | // be at least 1. | 
|  | class CERES_EXPORT_INTERNAL SchurComplementSolver | 
|  | : public BlockSparseMatrixSolver { | 
|  | public: | 
|  | explicit SchurComplementSolver(const LinearSolver::Options& options) | 
|  | : options_(options) { | 
|  | CHECK_GT(options.elimination_groups.size(), 1); | 
|  | CHECK_GT(options.elimination_groups[0], 0); | 
|  | CHECK(options.context != NULL); | 
|  | } | 
|  | SchurComplementSolver(const SchurComplementSolver&) = delete; | 
|  | void operator=(const SchurComplementSolver&) = delete; | 
|  |  | 
|  | // LinearSolver methods | 
|  | virtual ~SchurComplementSolver() {} | 
|  | LinearSolver::Summary SolveImpl( | 
|  | BlockSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* x) override; | 
|  |  | 
|  | protected: | 
|  | const LinearSolver::Options& options() const { return options_; } | 
|  |  | 
|  | const BlockRandomAccessMatrix* lhs() const { return lhs_.get(); } | 
|  | void set_lhs(BlockRandomAccessMatrix* lhs) { lhs_.reset(lhs); } | 
|  | const double* rhs() const { return rhs_.get(); } | 
|  | void set_rhs(double* rhs) { rhs_.reset(rhs); } | 
|  |  | 
|  | private: | 
|  | virtual void InitStorage(const CompressedRowBlockStructure* bs) = 0; | 
|  | virtual LinearSolver::Summary SolveReducedLinearSystem( | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* solution) = 0; | 
|  |  | 
|  | LinearSolver::Options options_; | 
|  |  | 
|  | std::unique_ptr<SchurEliminatorBase> eliminator_; | 
|  | std::unique_ptr<BlockRandomAccessMatrix> lhs_; | 
|  | std::unique_ptr<double[]> rhs_; | 
|  | }; | 
|  |  | 
|  | // Dense Cholesky factorization based solver. | 
|  | class DenseSchurComplementSolver : public SchurComplementSolver { | 
|  | public: | 
|  | explicit DenseSchurComplementSolver(const LinearSolver::Options& options) | 
|  | : SchurComplementSolver(options) {} | 
|  | DenseSchurComplementSolver(const DenseSchurComplementSolver&) = delete; | 
|  | void operator=(const DenseSchurComplementSolver&) = delete; | 
|  |  | 
|  | virtual ~DenseSchurComplementSolver() {} | 
|  |  | 
|  | private: | 
|  | void InitStorage(const CompressedRowBlockStructure* bs) final; | 
|  | LinearSolver::Summary SolveReducedLinearSystem( | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* solution) final; | 
|  | }; | 
|  |  | 
|  | // Sparse Cholesky factorization based solver. | 
|  | class SparseSchurComplementSolver : public SchurComplementSolver { | 
|  | public: | 
|  | explicit SparseSchurComplementSolver(const LinearSolver::Options& options); | 
|  | SparseSchurComplementSolver(const SparseSchurComplementSolver&) = delete; | 
|  | void operator=(const SparseSchurComplementSolver&) = delete; | 
|  |  | 
|  | virtual ~SparseSchurComplementSolver(); | 
|  |  | 
|  | private: | 
|  | void InitStorage(const CompressedRowBlockStructure* bs) final; | 
|  | LinearSolver::Summary SolveReducedLinearSystem( | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* solution) final; | 
|  | LinearSolver::Summary SolveReducedLinearSystemUsingConjugateGradients( | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, double* solution); | 
|  |  | 
|  | // Size of the blocks in the Schur complement. | 
|  | std::vector<int> blocks_; | 
|  | std::unique_ptr<SparseCholesky> sparse_cholesky_; | 
|  | std::unique_ptr<BlockRandomAccessDiagonalMatrix> preconditioner_; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_ |