| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/compressed_row_sparse_matrix.h" |
| |
| #include <algorithm> |
| #include <vector> |
| #include "ceres/crs_matrix.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/matrix_proto.h" |
| |
| namespace ceres { |
| namespace internal { |
| namespace { |
| |
| // Helper functor used by the constructor for reordering the contents |
| // of a TripletSparseMatrix. This comparator assumes thay there are no |
| // duplicates in the pair of arrays rows and cols, i.e., there is no |
| // indices i and j (not equal to each other) s.t. |
| // |
| // rows[i] == rows[j] && cols[i] == cols[j] |
| // |
| // If this is the case, this functor will not be a StrictWeakOrdering. |
| struct RowColLessThan { |
| RowColLessThan(const int* rows, const int* cols) |
| : rows(rows), cols(cols) { |
| } |
| |
| bool operator()(const int x, const int y) const { |
| if (rows[x] == rows[y]) { |
| return (cols[x] < cols[y]); |
| } |
| return (rows[x] < rows[y]); |
| } |
| |
| const int* rows; |
| const int* cols; |
| }; |
| |
| } // namespace |
| |
| // This constructor gives you a semi-initialized CompressedRowSparseMatrix. |
| CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows, |
| int num_cols, |
| int max_num_nonzeros) { |
| num_rows_ = num_rows; |
| num_cols_ = num_cols; |
| max_num_nonzeros_ = max_num_nonzeros; |
| |
| VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ |
| << " max_num_nonzeros: " << max_num_nonzeros_ |
| << ". Allocating " << (num_rows_ + 1) * sizeof(int) + // NOLINT |
| max_num_nonzeros_ * sizeof(int) + // NOLINT |
| max_num_nonzeros_ * sizeof(double); // NOLINT |
| |
| rows_.reset(new int[num_rows_ + 1]); |
| cols_.reset(new int[max_num_nonzeros_]); |
| values_.reset(new double[max_num_nonzeros_]); |
| |
| fill(rows_.get(), rows_.get() + num_rows_ + 1, 0); |
| fill(cols_.get(), cols_.get() + max_num_nonzeros_, 0); |
| fill(values_.get(), values_.get() + max_num_nonzeros_, 0); |
| } |
| |
| CompressedRowSparseMatrix::CompressedRowSparseMatrix( |
| const TripletSparseMatrix& m) { |
| num_rows_ = m.num_rows(); |
| num_cols_ = m.num_cols(); |
| max_num_nonzeros_ = m.max_num_nonzeros(); |
| |
| // index is the list of indices into the TripletSparseMatrix m. |
| vector<int> index(m.num_nonzeros(), 0); |
| for (int i = 0; i < m.num_nonzeros(); ++i) { |
| index[i] = i; |
| } |
| |
| // Sort index such that the entries of m are ordered by row and ties |
| // are broken by column. |
| sort(index.begin(), index.end(), RowColLessThan(m.rows(), m.cols())); |
| |
| VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ |
| << " max_num_nonzeros: " << max_num_nonzeros_ |
| << ". Allocating " << (num_rows_ + 1) * sizeof(int) + // NOLINT |
| max_num_nonzeros_ * sizeof(int) + // NOLINT |
| max_num_nonzeros_ * sizeof(double); // NOLINT |
| |
| rows_.reset(new int[num_rows_ + 1]); |
| cols_.reset(new int[max_num_nonzeros_]); |
| values_.reset(new double[max_num_nonzeros_]); |
| |
| // rows_ = 0 |
| fill(rows_.get(), rows_.get() + num_rows_ + 1, 0); |
| |
| // Copy the contents of the cols and values array in the order given |
| // by index and count the number of entries in each row. |
| for (int i = 0; i < m.num_nonzeros(); ++i) { |
| const int idx = index[i]; |
| ++rows_[m.rows()[idx] + 1]; |
| cols_[i] = m.cols()[idx]; |
| values_[i] = m.values()[idx]; |
| } |
| |
| // Find the cumulative sum of the row counts. |
| for (int i = 1; i < num_rows_ + 1; ++i) { |
| rows_[i] += rows_[i-1]; |
| } |
| |
| CHECK_EQ(num_nonzeros(), m.num_nonzeros()); |
| } |
| |
| #ifndef CERES_NO_PROTOCOL_BUFFERS |
| CompressedRowSparseMatrix::CompressedRowSparseMatrix( |
| const SparseMatrixProto& outer_proto) { |
| CHECK(outer_proto.has_compressed_row_matrix()); |
| |
| const CompressedRowSparseMatrixProto& proto = |
| outer_proto.compressed_row_matrix(); |
| |
| num_rows_ = proto.num_rows(); |
| num_cols_ = proto.num_cols(); |
| |
| rows_.reset(new int[proto.rows_size()]); |
| cols_.reset(new int[proto.cols_size()]); |
| values_.reset(new double[proto.values_size()]); |
| |
| for (int i = 0; i < proto.rows_size(); ++i) { |
| rows_[i] = proto.rows(i); |
| } |
| |
| CHECK_EQ(proto.rows_size(), num_rows_ + 1); |
| CHECK_EQ(proto.cols_size(), proto.values_size()); |
| CHECK_EQ(proto.cols_size(), rows_[num_rows_]); |
| |
| for (int i = 0; i < proto.cols_size(); ++i) { |
| cols_[i] = proto.cols(i); |
| values_[i] = proto.values(i); |
| } |
| |
| max_num_nonzeros_ = proto.cols_size(); |
| } |
| #endif |
| |
| CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal, |
| int num_rows) { |
| CHECK_NOTNULL(diagonal); |
| |
| num_rows_ = num_rows; |
| num_cols_ = num_rows; |
| max_num_nonzeros_ = num_rows; |
| |
| rows_.reset(new int[num_rows_ + 1]); |
| cols_.reset(new int[num_rows_]); |
| values_.reset(new double[num_rows_]); |
| |
| rows_[0] = 0; |
| for (int i = 0; i < num_rows_; ++i) { |
| cols_[i] = i; |
| values_[i] = diagonal[i]; |
| rows_[i + 1] = i + 1; |
| } |
| |
| CHECK_EQ(num_nonzeros(), num_rows); |
| } |
| |
| CompressedRowSparseMatrix::~CompressedRowSparseMatrix() { |
| } |
| |
| void CompressedRowSparseMatrix::SetZero() { |
| fill(values_.get(), values_.get() + num_nonzeros(), 0.0); |
| } |
| |
| void CompressedRowSparseMatrix::RightMultiply(const double* x, |
| double* y) const { |
| CHECK_NOTNULL(x); |
| CHECK_NOTNULL(y); |
| |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| y[r] += values_[idx] * x[cols_[idx]]; |
| } |
| } |
| } |
| |
| void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const { |
| CHECK_NOTNULL(x); |
| CHECK_NOTNULL(y); |
| |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| y[cols_[idx]] += values_[idx] * x[r]; |
| } |
| } |
| } |
| |
| void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const { |
| CHECK_NOTNULL(x); |
| |
| fill(x, x + num_cols_, 0.0); |
| for (int idx = 0; idx < rows_[num_rows_]; ++idx) { |
| x[cols_[idx]] += values_[idx] * values_[idx]; |
| } |
| } |
| |
| void CompressedRowSparseMatrix::ScaleColumns(const double* scale) { |
| CHECK_NOTNULL(scale); |
| |
| for (int idx = 0; idx < rows_[num_rows_]; ++idx) { |
| values_[idx] *= scale[cols_[idx]]; |
| } |
| } |
| |
| void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { |
| CHECK_NOTNULL(dense_matrix); |
| dense_matrix->resize(num_rows_, num_cols_); |
| dense_matrix->setZero(); |
| |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| (*dense_matrix)(r, cols_[idx]) = values_[idx]; |
| } |
| } |
| } |
| |
| #ifndef CERES_NO_PROTOCOL_BUFFERS |
| void CompressedRowSparseMatrix::ToProto(SparseMatrixProto* outer_proto) const { |
| CHECK_NOTNULL(outer_proto); |
| |
| outer_proto->Clear(); |
| CompressedRowSparseMatrixProto* proto |
| = outer_proto->mutable_compressed_row_matrix(); |
| |
| proto->set_num_rows(num_rows_); |
| proto->set_num_cols(num_cols_); |
| |
| for (int r = 0; r < num_rows_ + 1; ++r) { |
| proto->add_rows(rows_[r]); |
| } |
| |
| for (int idx = 0; idx < rows_[num_rows_]; ++idx) { |
| proto->add_cols(cols_[idx]); |
| proto->add_values(values_[idx]); |
| } |
| } |
| #endif |
| |
| void CompressedRowSparseMatrix::DeleteRows(int delta_rows) { |
| CHECK_GE(delta_rows, 0); |
| CHECK_LE(delta_rows, num_rows_); |
| |
| int new_num_rows = num_rows_ - delta_rows; |
| |
| num_rows_ = new_num_rows; |
| int* new_rows = new int[num_rows_ + 1]; |
| copy(rows_.get(), rows_.get() + num_rows_ + 1, new_rows); |
| rows_.reset(new_rows); |
| } |
| |
| void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) { |
| CHECK_EQ(m.num_cols(), num_cols_); |
| |
| // Check if there is enough space. If not, then allocate new arrays |
| // to hold the combined matrix and copy the contents of this matrix |
| // into it. |
| if (max_num_nonzeros_ < num_nonzeros() + m.num_nonzeros()) { |
| int new_max_num_nonzeros = num_nonzeros() + m.num_nonzeros(); |
| |
| VLOG(1) << "Reallocating " << sizeof(int) * new_max_num_nonzeros; // NOLINT |
| |
| int* new_cols = new int[new_max_num_nonzeros]; |
| copy(cols_.get(), cols_.get() + max_num_nonzeros_, new_cols); |
| cols_.reset(new_cols); |
| |
| double* new_values = new double[new_max_num_nonzeros]; |
| copy(values_.get(), values_.get() + max_num_nonzeros_, new_values); |
| values_.reset(new_values); |
| |
| max_num_nonzeros_ = new_max_num_nonzeros; |
| } |
| |
| // Copy the contents of m into this matrix. |
| copy(m.cols(), m.cols() + m.num_nonzeros(), cols_.get() + num_nonzeros()); |
| copy(m.values(), |
| m.values() + m.num_nonzeros(), |
| values_.get() + num_nonzeros()); |
| |
| // Create the new rows array to hold the enlarged matrix. |
| int* new_rows = new int[num_rows_ + m.num_rows() + 1]; |
| // The first num_rows_ entries are the same |
| copy(rows_.get(), rows_.get() + num_rows_, new_rows); |
| |
| // new_rows = [rows_, m.row() + rows_[num_rows_]] |
| fill(new_rows + num_rows_, |
| new_rows + num_rows_ + m.num_rows() + 1, |
| rows_[num_rows_]); |
| |
| for (int r = 0; r < m.num_rows() + 1; ++r) { |
| new_rows[num_rows_ + r] += m.rows()[r]; |
| } |
| |
| rows_.reset(new_rows); |
| num_rows_ += m.num_rows(); |
| } |
| |
| void CompressedRowSparseMatrix::ToTextFile(FILE* file) const { |
| CHECK_NOTNULL(file); |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| fprintf(file, "% 10d % 10d %17f\n", r, cols_[idx], values_[idx]); |
| } |
| } |
| } |
| |
| void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const { |
| matrix->num_rows = num_rows(); |
| matrix->num_cols = num_cols(); |
| |
| matrix->rows.resize(matrix->num_rows + 1); |
| matrix->cols.resize(num_nonzeros()); |
| matrix->values.resize(num_nonzeros()); |
| |
| copy(rows_.get(), rows_.get() + matrix->num_rows + 1, matrix->rows.begin()); |
| copy(cols_.get(), cols_.get() + num_nonzeros(), matrix->cols.begin()); |
| copy(values_.get(), values_.get() + num_nonzeros(), matrix->values.begin()); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |