| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // Generic loop for line search based optimization algorithms. |
| // |
| // This is primarily inpsired by the minFunc packaged written by Mark |
| // Schmidt. |
| // |
| // http://www.di.ens.fr/~mschmidt/Software/minFunc.html |
| // |
| // For details on the theory and implementation see "Numerical |
| // Optimization" by Nocedal & Wright. |
| |
| #ifndef CERES_NO_LINE_SEARCH_MINIMIZER |
| |
| #include "ceres/line_search_minimizer.h" |
| |
| #include <algorithm> |
| #include <cstdlib> |
| #include <cmath> |
| #include <string> |
| #include <vector> |
| |
| #include "Eigen/Dense" |
| #include "ceres/array_utils.h" |
| #include "ceres/evaluator.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/line_search.h" |
| #include "ceres/line_search_direction.h" |
| #include "ceres/stringprintf.h" |
| #include "ceres/types.h" |
| #include "ceres/wall_time.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| namespace { |
| // Small constant for various floating point issues. |
| // TODO(sameeragarwal): Change to a better name if this has only one |
| // use. |
| const double kEpsilon = 1e-12; |
| |
| bool Evaluate(Evaluator* evaluator, |
| const Vector& x, |
| LineSearchMinimizer::State* state) { |
| const bool status = evaluator->Evaluate(x.data(), |
| &(state->cost), |
| NULL, |
| state->gradient.data(), |
| NULL); |
| if (status) { |
| state->gradient_squared_norm = state->gradient.squaredNorm(); |
| state->gradient_max_norm = state->gradient.lpNorm<Eigen::Infinity>(); |
| } |
| |
| return status; |
| } |
| |
| } // namespace |
| |
| void LineSearchMinimizer::Minimize(const Minimizer::Options& options, |
| double* parameters, |
| Solver::Summary* summary) { |
| double start_time = WallTimeInSeconds(); |
| double iteration_start_time = start_time; |
| |
| Evaluator* evaluator = CHECK_NOTNULL(options.evaluator); |
| const int num_parameters = evaluator->NumParameters(); |
| const int num_effective_parameters = evaluator->NumEffectiveParameters(); |
| |
| summary->termination_type = NO_CONVERGENCE; |
| summary->num_successful_steps = 0; |
| summary->num_unsuccessful_steps = 0; |
| |
| VectorRef x(parameters, num_parameters); |
| |
| State current_state(num_parameters, num_effective_parameters); |
| State previous_state(num_parameters, num_effective_parameters); |
| |
| Vector delta(num_effective_parameters); |
| Vector x_plus_delta(num_parameters); |
| |
| IterationSummary iteration_summary; |
| iteration_summary.iteration = 0; |
| iteration_summary.step_is_valid = false; |
| iteration_summary.step_is_successful = false; |
| iteration_summary.cost_change = 0.0; |
| iteration_summary.gradient_max_norm = 0.0; |
| iteration_summary.step_norm = 0.0; |
| iteration_summary.linear_solver_iterations = 0; |
| iteration_summary.step_solver_time_in_seconds = 0; |
| |
| // Do initial cost and Jacobian evaluation. |
| if (!Evaluate(evaluator, x, ¤t_state)) { |
| LOG(WARNING) << "Terminating: Cost and gradient evaluation failed."; |
| summary->termination_type = NUMERICAL_FAILURE; |
| return; |
| } |
| |
| summary->initial_cost = current_state.cost + summary->fixed_cost; |
| iteration_summary.cost = current_state.cost + summary->fixed_cost; |
| |
| iteration_summary.gradient_max_norm = current_state.gradient_max_norm; |
| |
| // The initial gradient max_norm is bounded from below so that we do |
| // not divide by zero. |
| const double initial_gradient_max_norm = |
| max(iteration_summary.gradient_max_norm, kEpsilon); |
| const double absolute_gradient_tolerance = |
| options.gradient_tolerance * initial_gradient_max_norm; |
| |
| if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { |
| summary->termination_type = GRADIENT_TOLERANCE; |
| VLOG(1) << "Terminating: Gradient tolerance reached." |
| << "Relative gradient max norm: " |
| << iteration_summary.gradient_max_norm / initial_gradient_max_norm |
| << " <= " << options.gradient_tolerance; |
| return; |
| } |
| |
| iteration_summary.iteration_time_in_seconds = |
| WallTimeInSeconds() - iteration_start_time; |
| iteration_summary.cumulative_time_in_seconds = |
| WallTimeInSeconds() - start_time |
| + summary->preprocessor_time_in_seconds; |
| summary->iterations.push_back(iteration_summary); |
| |
| LineSearchDirection::Options line_search_direction_options; |
| line_search_direction_options.num_parameters = num_effective_parameters; |
| line_search_direction_options.type = options.line_search_direction_type; |
| line_search_direction_options.nonlinear_conjugate_gradient_type = |
| options.nonlinear_conjugate_gradient_type; |
| line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank; |
| scoped_ptr<LineSearchDirection> line_search_direction( |
| LineSearchDirection::Create(line_search_direction_options)); |
| |
| LineSearchFunction line_search_function(evaluator); |
| LineSearch::Options line_search_options; |
| line_search_options.function = &line_search_function; |
| |
| // TODO(sameeragarwal): Make this parameterizable over different |
| // line searches. |
| ArmijoLineSearch line_search; |
| LineSearch::Summary line_search_summary; |
| |
| while (true) { |
| if (!RunCallbacks(options.callbacks, iteration_summary, summary)) { |
| return; |
| } |
| |
| iteration_start_time = WallTimeInSeconds(); |
| if (iteration_summary.iteration >= options.max_num_iterations) { |
| summary->termination_type = NO_CONVERGENCE; |
| VLOG(1) << "Terminating: Maximum number of iterations reached."; |
| break; |
| } |
| |
| const double total_solver_time = iteration_start_time - start_time + |
| summary->preprocessor_time_in_seconds; |
| if (total_solver_time >= options.max_solver_time_in_seconds) { |
| summary->termination_type = NO_CONVERGENCE; |
| VLOG(1) << "Terminating: Maximum solver time reached."; |
| break; |
| } |
| |
| iteration_summary = IterationSummary(); |
| iteration_summary.iteration = summary->iterations.back().iteration + 1; |
| |
| bool line_search_status = true; |
| if (iteration_summary.iteration == 1) { |
| current_state.search_direction = -current_state.gradient; |
| } else { |
| line_search_status = line_search_direction->NextDirection( |
| previous_state, |
| current_state, |
| ¤t_state.search_direction); |
| } |
| |
| if (!line_search_status) { |
| LOG(WARNING) << "Line search direction computation failed. " |
| "Resorting to steepest descent."; |
| current_state.search_direction = -current_state.gradient; |
| } |
| |
| line_search_function.Init(x, current_state.search_direction); |
| current_state.directional_derivative = |
| current_state.gradient.dot(current_state.search_direction); |
| |
| // TODO(sameeragarwal): Refactor this into its own object and add |
| // explanations for the various choices. |
| const double initial_step_size = (iteration_summary.iteration == 1) |
| ? min(1.0, 1.0 / current_state.gradient_max_norm) |
| : min(1.0, 2.0 * (current_state.cost - previous_state.cost) / |
| current_state.directional_derivative); |
| |
| line_search.Search(line_search_options, |
| initial_step_size, |
| current_state.cost, |
| current_state.directional_derivative, |
| &line_search_summary); |
| |
| current_state.step_size = line_search_summary.optimal_step_size; |
| delta = current_state.step_size * current_state.search_direction; |
| |
| previous_state = current_state; |
| |
| // TODO(sameeragarwal): Collect stats. |
| if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data()) || |
| !Evaluate(evaluator, x_plus_delta, ¤t_state)) { |
| LOG(WARNING) << "Evaluation failed."; |
| } else { |
| x = x_plus_delta; |
| } |
| |
| iteration_summary.gradient_max_norm = current_state.gradient_max_norm; |
| if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { |
| summary->termination_type = GRADIENT_TOLERANCE; |
| VLOG(1) << "Terminating: Gradient tolerance reached." |
| << "Relative gradient max norm: " |
| << iteration_summary.gradient_max_norm / initial_gradient_max_norm |
| << " <= " << options.gradient_tolerance; |
| break; |
| } |
| |
| iteration_summary.cost_change = previous_state.cost - current_state.cost; |
| const double absolute_function_tolerance = |
| options.function_tolerance * previous_state.cost; |
| if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { |
| VLOG(1) << "Terminating. Function tolerance reached. " |
| << "|cost_change|/cost: " |
| << fabs(iteration_summary.cost_change) / previous_state.cost |
| << " <= " << options.function_tolerance; |
| summary->termination_type = FUNCTION_TOLERANCE; |
| return; |
| } |
| |
| iteration_summary.cost = current_state.cost + summary->fixed_cost; |
| iteration_summary.step_norm = delta.norm(); |
| iteration_summary.step_is_valid = true; |
| iteration_summary.step_is_successful = true; |
| iteration_summary.step_norm = delta.norm(); |
| iteration_summary.step_size = current_state.step_size; |
| iteration_summary.line_search_function_evaluations = |
| line_search_summary.num_evaluations; |
| iteration_summary.iteration_time_in_seconds = |
| WallTimeInSeconds() - iteration_start_time; |
| iteration_summary.cumulative_time_in_seconds = |
| WallTimeInSeconds() - start_time |
| + summary->preprocessor_time_in_seconds; |
| |
| summary->iterations.push_back(iteration_summary); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_NO_LINE_SEARCH_MINIMIZER |