|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: thadh@gmail.com (Thad Hughes) | 
|  | //         mierle@gmail.com (Keir Mierle) | 
|  | //         sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/dynamic_autodiff_cost_function.h" | 
|  |  | 
|  | #include <cstddef> | 
|  | #include <memory> | 
|  | #include <vector> | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | // Takes 2 parameter blocks: | 
|  | //     parameters[0] is size 10. | 
|  | //     parameters[1] is size 5. | 
|  | // Emits 21 residuals: | 
|  | //     A: i - parameters[0][i], for i in [0,10)  -- this is 10 residuals | 
|  | //     B: parameters[0][i] - i, for i in [0,10)  -- this is another 10. | 
|  | //     C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i]) | 
|  | class MyCostFunctor { | 
|  | public: | 
|  | template <typename T> | 
|  | bool operator()(T const* const* parameters, T* residuals) const { | 
|  | const T* params0 = parameters[0]; | 
|  | int r = 0; | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | residuals[r++] = T(i) - params0[i]; | 
|  | residuals[r++] = params0[i] - T(i); | 
|  | } | 
|  |  | 
|  | T c_residual(0.0); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | c_residual += pow(params0[i], 2) - T(8) * params0[i]; | 
|  | } | 
|  |  | 
|  | const T* params1 = parameters[1]; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | c_residual += params1[i]; | 
|  | } | 
|  | residuals[r++] = c_residual; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(DynamicAutodiffCostFunctionTest, TestResiduals) { | 
|  | std::vector<double> param_block_0(10, 0.0); | 
|  | std::vector<double> param_block_1(5, 0.0); | 
|  | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( | 
|  | new MyCostFunctor()); | 
|  | cost_function.AddParameterBlock(param_block_0.size()); | 
|  | cost_function.AddParameterBlock(param_block_1.size()); | 
|  | cost_function.SetNumResiduals(21); | 
|  |  | 
|  | // Test residual computation. | 
|  | std::vector<double> residuals(21, -100000); | 
|  | std::vector<double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = ¶m_block_0[0]; | 
|  | parameter_blocks[1] = ¶m_block_1[0]; | 
|  | EXPECT_TRUE( | 
|  | cost_function.Evaluate(¶meter_blocks[0], residuals.data(), nullptr)); | 
|  | for (int r = 0; r < 10; ++r) { | 
|  | EXPECT_EQ(1.0 * r, residuals.at(r * 2)); | 
|  | EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1)); | 
|  | } | 
|  | EXPECT_EQ(0, residuals.at(20)); | 
|  | } | 
|  |  | 
|  | TEST(DynamicAutodiffCostFunctionTest, TestJacobian) { | 
|  | // Test the residual counting. | 
|  | std::vector<double> param_block_0(10, 0.0); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | param_block_0[i] = 2 * i; | 
|  | } | 
|  | std::vector<double> param_block_1(5, 0.0); | 
|  | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( | 
|  | new MyCostFunctor()); | 
|  | cost_function.AddParameterBlock(param_block_0.size()); | 
|  | cost_function.AddParameterBlock(param_block_1.size()); | 
|  | cost_function.SetNumResiduals(21); | 
|  |  | 
|  | // Prepare the residuals. | 
|  | std::vector<double> residuals(21, -100000); | 
|  |  | 
|  | // Prepare the parameters. | 
|  | std::vector<double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = ¶m_block_0[0]; | 
|  | parameter_blocks[1] = ¶m_block_1[0]; | 
|  |  | 
|  | // Prepare the jacobian. | 
|  | std::vector<std::vector<double>> jacobian_vect(2); | 
|  | jacobian_vect[0].resize(21 * 10, -100000); | 
|  | jacobian_vect[1].resize(21 * 5, -100000); | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect[0].data()); | 
|  | jacobian.push_back(jacobian_vect[1].data()); | 
|  |  | 
|  | // Test jacobian computation. | 
|  | EXPECT_TRUE(cost_function.Evaluate( | 
|  | parameter_blocks.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int r = 0; r < 10; ++r) { | 
|  | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
|  | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
|  | } | 
|  | EXPECT_EQ(420, residuals.at(20)); | 
|  | for (int p = 0; p < 10; ++p) { | 
|  | // Check "A" Jacobian. | 
|  | EXPECT_EQ(-1.0, jacobian_vect[0][2 * p * 10 + p]); | 
|  | // Check "B" Jacobian. | 
|  | EXPECT_EQ(+1.0, jacobian_vect[0][(2 * p + 1) * 10 + p]); | 
|  | jacobian_vect[0][2 * p * 10 + p] = 0.0; | 
|  | jacobian_vect[0][(2 * p + 1) * 10 + p] = 0.0; | 
|  | } | 
|  |  | 
|  | // Check "C" Jacobian for first parameter block. | 
|  | for (int p = 0; p < 10; ++p) { | 
|  | EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); | 
|  | jacobian_vect[0][20 * 10 + p] = 0.0; | 
|  | } | 
|  | for (double entry : jacobian_vect[0]) { | 
|  | EXPECT_EQ(0.0, entry); | 
|  | } | 
|  |  | 
|  | // Check "C" Jacobian for second parameter block. | 
|  | for (int p = 0; p < 5; ++p) { | 
|  | EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); | 
|  | jacobian_vect[1][20 * 5 + p] = 0.0; | 
|  | } | 
|  | for (double entry : jacobian_vect[1]) { | 
|  | EXPECT_EQ(0.0, entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(DynamicAutodiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) { | 
|  | // Test the residual counting. | 
|  | std::vector<double> param_block_0(10, 0.0); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | param_block_0[i] = 2 * i; | 
|  | } | 
|  | std::vector<double> param_block_1(5, 0.0); | 
|  | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( | 
|  | new MyCostFunctor()); | 
|  | cost_function.AddParameterBlock(param_block_0.size()); | 
|  | cost_function.AddParameterBlock(param_block_1.size()); | 
|  | cost_function.SetNumResiduals(21); | 
|  |  | 
|  | // Prepare the residuals. | 
|  | std::vector<double> residuals(21, -100000); | 
|  |  | 
|  | // Prepare the parameters. | 
|  | std::vector<double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = ¶m_block_0[0]; | 
|  | parameter_blocks[1] = ¶m_block_1[0]; | 
|  |  | 
|  | // Prepare the jacobian. | 
|  | std::vector<std::vector<double>> jacobian_vect(2); | 
|  | jacobian_vect[0].resize(21 * 10, -100000); | 
|  | jacobian_vect[1].resize(21 * 5, -100000); | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(nullptr); | 
|  | jacobian.push_back(jacobian_vect[1].data()); | 
|  |  | 
|  | // Test jacobian computation. | 
|  | EXPECT_TRUE(cost_function.Evaluate( | 
|  | parameter_blocks.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int r = 0; r < 10; ++r) { | 
|  | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
|  | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
|  | } | 
|  | EXPECT_EQ(420, residuals.at(20)); | 
|  |  | 
|  | // Check "C" Jacobian for second parameter block. | 
|  | for (int p = 0; p < 5; ++p) { | 
|  | EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); | 
|  | jacobian_vect[1][20 * 5 + p] = 0.0; | 
|  | } | 
|  | for (double& i : jacobian_vect[1]) { | 
|  | EXPECT_EQ(0.0, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(DynamicAutodiffCostFunctionTest, | 
|  | JacobianWithSecondParameterBlockConstant) {  // NOLINT | 
|  | // Test the residual counting. | 
|  | std::vector<double> param_block_0(10, 0.0); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | param_block_0[i] = 2 * i; | 
|  | } | 
|  | std::vector<double> param_block_1(5, 0.0); | 
|  | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( | 
|  | new MyCostFunctor()); | 
|  | cost_function.AddParameterBlock(param_block_0.size()); | 
|  | cost_function.AddParameterBlock(param_block_1.size()); | 
|  | cost_function.SetNumResiduals(21); | 
|  |  | 
|  | // Prepare the residuals. | 
|  | std::vector<double> residuals(21, -100000); | 
|  |  | 
|  | // Prepare the parameters. | 
|  | std::vector<double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = ¶m_block_0[0]; | 
|  | parameter_blocks[1] = ¶m_block_1[0]; | 
|  |  | 
|  | // Prepare the jacobian. | 
|  | std::vector<std::vector<double>> jacobian_vect(2); | 
|  | jacobian_vect[0].resize(21 * 10, -100000); | 
|  | jacobian_vect[1].resize(21 * 5, -100000); | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect[0].data()); | 
|  | jacobian.push_back(nullptr); | 
|  |  | 
|  | // Test jacobian computation. | 
|  | EXPECT_TRUE(cost_function.Evaluate( | 
|  | parameter_blocks.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int r = 0; r < 10; ++r) { | 
|  | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
|  | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
|  | } | 
|  | EXPECT_EQ(420, residuals.at(20)); | 
|  | for (int p = 0; p < 10; ++p) { | 
|  | // Check "A" Jacobian. | 
|  | EXPECT_EQ(-1.0, jacobian_vect[0][2 * p * 10 + p]); | 
|  | // Check "B" Jacobian. | 
|  | EXPECT_EQ(+1.0, jacobian_vect[0][(2 * p + 1) * 10 + p]); | 
|  | jacobian_vect[0][2 * p * 10 + p] = 0.0; | 
|  | jacobian_vect[0][(2 * p + 1) * 10 + p] = 0.0; | 
|  | } | 
|  |  | 
|  | // Check "C" Jacobian for first parameter block. | 
|  | for (int p = 0; p < 10; ++p) { | 
|  | EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); | 
|  | jacobian_vect[0][20 * 10 + p] = 0.0; | 
|  | } | 
|  | for (double& i : jacobian_vect[0]) { | 
|  | EXPECT_EQ(0.0, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Takes 3 parameter blocks: | 
|  | //     parameters[0] (x) is size 1. | 
|  | //     parameters[1] (y) is size 2. | 
|  | //     parameters[2] (z) is size 3. | 
|  | // Emits 7 residuals: | 
|  | //     A: x[0] (= sum_x) | 
|  | //     B: y[0] + 2.0 * y[1] (= sum_y) | 
|  | //     C: z[0] + 3.0 * z[1] + 6.0 * z[2] (= sum_z) | 
|  | //     D: sum_x * sum_y | 
|  | //     E: sum_y * sum_z | 
|  | //     F: sum_x * sum_z | 
|  | //     G: sum_x * sum_y * sum_z | 
|  | class MyThreeParameterCostFunctor { | 
|  | public: | 
|  | template <typename T> | 
|  | bool operator()(T const* const* parameters, T* residuals) const { | 
|  | const T* x = parameters[0]; | 
|  | const T* y = parameters[1]; | 
|  | const T* z = parameters[2]; | 
|  |  | 
|  | T sum_x = x[0]; | 
|  | T sum_y = y[0] + 2.0 * y[1]; | 
|  | T sum_z = z[0] + 3.0 * z[1] + 6.0 * z[2]; | 
|  |  | 
|  | residuals[0] = sum_x; | 
|  | residuals[1] = sum_y; | 
|  | residuals[2] = sum_z; | 
|  | residuals[3] = sum_x * sum_y; | 
|  | residuals[4] = sum_y * sum_z; | 
|  | residuals[5] = sum_x * sum_z; | 
|  | residuals[6] = sum_x * sum_y * sum_z; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ThreeParameterCostFunctorTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() final { | 
|  | // Prepare the parameters. | 
|  | x_.resize(1); | 
|  | x_[0] = 0.0; | 
|  |  | 
|  | y_.resize(2); | 
|  | y_[0] = 1.0; | 
|  | y_[1] = 3.0; | 
|  |  | 
|  | z_.resize(3); | 
|  | z_[0] = 2.0; | 
|  | z_[1] = 4.0; | 
|  | z_[2] = 6.0; | 
|  |  | 
|  | parameter_blocks_.resize(3); | 
|  | parameter_blocks_[0] = &x_[0]; | 
|  | parameter_blocks_[1] = &y_[0]; | 
|  | parameter_blocks_[2] = &z_[0]; | 
|  |  | 
|  | // Prepare the cost function. | 
|  | using DynamicMyThreeParameterCostFunction = | 
|  | DynamicAutoDiffCostFunction<MyThreeParameterCostFunctor, 3>; | 
|  | auto cost_function = std::make_unique<DynamicMyThreeParameterCostFunction>( | 
|  | new MyThreeParameterCostFunctor()); | 
|  | cost_function->AddParameterBlock(1); | 
|  | cost_function->AddParameterBlock(2); | 
|  | cost_function->AddParameterBlock(3); | 
|  | cost_function->SetNumResiduals(7); | 
|  |  | 
|  | cost_function_ = std::move(cost_function); | 
|  |  | 
|  | // Setup jacobian data. | 
|  | jacobian_vect_.resize(3); | 
|  | jacobian_vect_[0].resize(7 * x_.size(), -100000); | 
|  | jacobian_vect_[1].resize(7 * y_.size(), -100000); | 
|  | jacobian_vect_[2].resize(7 * z_.size(), -100000); | 
|  |  | 
|  | // Prepare the expected residuals. | 
|  | const double sum_x = x_[0]; | 
|  | const double sum_y = y_[0] + 2.0 * y_[1]; | 
|  | const double sum_z = z_[0] + 3.0 * z_[1] + 6.0 * z_[2]; | 
|  |  | 
|  | expected_residuals_.resize(7); | 
|  | expected_residuals_[0] = sum_x; | 
|  | expected_residuals_[1] = sum_y; | 
|  | expected_residuals_[2] = sum_z; | 
|  | expected_residuals_[3] = sum_x * sum_y; | 
|  | expected_residuals_[4] = sum_y * sum_z; | 
|  | expected_residuals_[5] = sum_x * sum_z; | 
|  | expected_residuals_[6] = sum_x * sum_y * sum_z; | 
|  |  | 
|  | // Prepare the expected jacobian entries. | 
|  | expected_jacobian_x_.resize(7); | 
|  | expected_jacobian_x_[0] = 1.0; | 
|  | expected_jacobian_x_[1] = 0.0; | 
|  | expected_jacobian_x_[2] = 0.0; | 
|  | expected_jacobian_x_[3] = sum_y; | 
|  | expected_jacobian_x_[4] = 0.0; | 
|  | expected_jacobian_x_[5] = sum_z; | 
|  | expected_jacobian_x_[6] = sum_y * sum_z; | 
|  |  | 
|  | expected_jacobian_y_.resize(14); | 
|  | expected_jacobian_y_[0] = 0.0; | 
|  | expected_jacobian_y_[1] = 0.0; | 
|  | expected_jacobian_y_[2] = 1.0; | 
|  | expected_jacobian_y_[3] = 2.0; | 
|  | expected_jacobian_y_[4] = 0.0; | 
|  | expected_jacobian_y_[5] = 0.0; | 
|  | expected_jacobian_y_[6] = sum_x; | 
|  | expected_jacobian_y_[7] = 2.0 * sum_x; | 
|  | expected_jacobian_y_[8] = sum_z; | 
|  | expected_jacobian_y_[9] = 2.0 * sum_z; | 
|  | expected_jacobian_y_[10] = 0.0; | 
|  | expected_jacobian_y_[11] = 0.0; | 
|  | expected_jacobian_y_[12] = sum_x * sum_z; | 
|  | expected_jacobian_y_[13] = 2.0 * sum_x * sum_z; | 
|  |  | 
|  | expected_jacobian_z_.resize(21); | 
|  | expected_jacobian_z_[0] = 0.0; | 
|  | expected_jacobian_z_[1] = 0.0; | 
|  | expected_jacobian_z_[2] = 0.0; | 
|  | expected_jacobian_z_[3] = 0.0; | 
|  | expected_jacobian_z_[4] = 0.0; | 
|  | expected_jacobian_z_[5] = 0.0; | 
|  | expected_jacobian_z_[6] = 1.0; | 
|  | expected_jacobian_z_[7] = 3.0; | 
|  | expected_jacobian_z_[8] = 6.0; | 
|  | expected_jacobian_z_[9] = 0.0; | 
|  | expected_jacobian_z_[10] = 0.0; | 
|  | expected_jacobian_z_[11] = 0.0; | 
|  | expected_jacobian_z_[12] = sum_y; | 
|  | expected_jacobian_z_[13] = 3.0 * sum_y; | 
|  | expected_jacobian_z_[14] = 6.0 * sum_y; | 
|  | expected_jacobian_z_[15] = sum_x; | 
|  | expected_jacobian_z_[16] = 3.0 * sum_x; | 
|  | expected_jacobian_z_[17] = 6.0 * sum_x; | 
|  | expected_jacobian_z_[18] = sum_x * sum_y; | 
|  | expected_jacobian_z_[19] = 3.0 * sum_x * sum_y; | 
|  | expected_jacobian_z_[20] = 6.0 * sum_x * sum_y; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | std::vector<double> x_; | 
|  | std::vector<double> y_; | 
|  | std::vector<double> z_; | 
|  |  | 
|  | std::vector<double*> parameter_blocks_; | 
|  |  | 
|  | std::unique_ptr<CostFunction> cost_function_; | 
|  |  | 
|  | std::vector<std::vector<double>> jacobian_vect_; | 
|  |  | 
|  | std::vector<double> expected_residuals_; | 
|  |  | 
|  | std::vector<double> expected_jacobian_x_; | 
|  | std::vector<double> expected_jacobian_y_; | 
|  | std::vector<double> expected_jacobian_z_; | 
|  | }; | 
|  |  | 
|  | TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterResiduals) { | 
|  | std::vector<double> residuals(7, -100000); | 
|  | EXPECT_TRUE(cost_function_->Evaluate( | 
|  | parameter_blocks_.data(), residuals.data(), nullptr)); | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterJacobian) { | 
|  | std::vector<double> residuals(7, -100000); | 
|  |  | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect_[0].data()); | 
|  | jacobian.push_back(jacobian_vect_[1].data()); | 
|  | jacobian.push_back(jacobian_vect_[2].data()); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate( | 
|  | parameter_blocks_.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_jacobian_x_[i], jacobian[0][i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 14; ++i) { | 
|  | EXPECT_EQ(expected_jacobian_y_[i], jacobian[1][i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 21; ++i) { | 
|  | EXPECT_EQ(expected_jacobian_z_[i], jacobian[2][i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ThreeParameterCostFunctorTest, | 
|  | ThreeParameterJacobianWithFirstAndLastParameterBlockConstant) { | 
|  | std::vector<double> residuals(7, -100000); | 
|  |  | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(nullptr); | 
|  | jacobian.push_back(jacobian_vect_[1].data()); | 
|  | jacobian.push_back(nullptr); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate( | 
|  | parameter_blocks_.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 14; ++i) { | 
|  | EXPECT_EQ(expected_jacobian_y_[i], jacobian[1][i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ThreeParameterCostFunctorTest, | 
|  | ThreeParameterJacobianWithSecondParameterBlockConstant) { | 
|  | std::vector<double> residuals(7, -100000); | 
|  |  | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect_[0].data()); | 
|  | jacobian.push_back(nullptr); | 
|  | jacobian.push_back(jacobian_vect_[2].data()); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate( | 
|  | parameter_blocks_.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_jacobian_x_[i], jacobian[0][i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 21; ++i) { | 
|  | EXPECT_EQ(expected_jacobian_z_[i], jacobian[2][i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Takes 6 parameter blocks all of size 1: | 
|  | //     x0, y0, y1, z0, z1, z2 | 
|  | // Same 7 residuals as MyThreeParameterCostFunctor. | 
|  | // Naming convention for tests is (V)ariable and (C)onstant. | 
|  | class MySixParameterCostFunctor { | 
|  | public: | 
|  | template <typename T> | 
|  | bool operator()(T const* const* parameters, T* residuals) const { | 
|  | const T* x0 = parameters[0]; | 
|  | const T* y0 = parameters[1]; | 
|  | const T* y1 = parameters[2]; | 
|  | const T* z0 = parameters[3]; | 
|  | const T* z1 = parameters[4]; | 
|  | const T* z2 = parameters[5]; | 
|  |  | 
|  | T sum_x = x0[0]; | 
|  | T sum_y = y0[0] + 2.0 * y1[0]; | 
|  | T sum_z = z0[0] + 3.0 * z1[0] + 6.0 * z2[0]; | 
|  |  | 
|  | residuals[0] = sum_x; | 
|  | residuals[1] = sum_y; | 
|  | residuals[2] = sum_z; | 
|  | residuals[3] = sum_x * sum_y; | 
|  | residuals[4] = sum_y * sum_z; | 
|  | residuals[5] = sum_x * sum_z; | 
|  | residuals[6] = sum_x * sum_y * sum_z; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class SixParameterCostFunctorTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() final { | 
|  | // Prepare the parameters. | 
|  | x0_ = 0.0; | 
|  | y0_ = 1.0; | 
|  | y1_ = 3.0; | 
|  | z0_ = 2.0; | 
|  | z1_ = 4.0; | 
|  | z2_ = 6.0; | 
|  |  | 
|  | parameter_blocks_.resize(6); | 
|  | parameter_blocks_[0] = &x0_; | 
|  | parameter_blocks_[1] = &y0_; | 
|  | parameter_blocks_[2] = &y1_; | 
|  | parameter_blocks_[3] = &z0_; | 
|  | parameter_blocks_[4] = &z1_; | 
|  | parameter_blocks_[5] = &z2_; | 
|  |  | 
|  | // Prepare the cost function. | 
|  | using DynamicMySixParameterCostFunction = | 
|  | DynamicAutoDiffCostFunction<MySixParameterCostFunctor, 3>; | 
|  | auto cost_function = std::make_unique<DynamicMySixParameterCostFunction>( | 
|  | new MySixParameterCostFunctor()); | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | cost_function->AddParameterBlock(1); | 
|  | } | 
|  | cost_function->SetNumResiduals(7); | 
|  |  | 
|  | cost_function_ = std::move(cost_function); | 
|  |  | 
|  | // Setup jacobian data. | 
|  | jacobian_vect_.resize(6); | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | jacobian_vect_[i].resize(7, -100000); | 
|  | } | 
|  |  | 
|  | // Prepare the expected residuals. | 
|  | const double sum_x = x0_; | 
|  | const double sum_y = y0_ + 2.0 * y1_; | 
|  | const double sum_z = z0_ + 3.0 * z1_ + 6.0 * z2_; | 
|  |  | 
|  | expected_residuals_.resize(7); | 
|  | expected_residuals_[0] = sum_x; | 
|  | expected_residuals_[1] = sum_y; | 
|  | expected_residuals_[2] = sum_z; | 
|  | expected_residuals_[3] = sum_x * sum_y; | 
|  | expected_residuals_[4] = sum_y * sum_z; | 
|  | expected_residuals_[5] = sum_x * sum_z; | 
|  | expected_residuals_[6] = sum_x * sum_y * sum_z; | 
|  |  | 
|  | // Prepare the expected jacobian entries. | 
|  | expected_jacobians_.resize(6); | 
|  | expected_jacobians_[0].resize(7); | 
|  | expected_jacobians_[0][0] = 1.0; | 
|  | expected_jacobians_[0][1] = 0.0; | 
|  | expected_jacobians_[0][2] = 0.0; | 
|  | expected_jacobians_[0][3] = sum_y; | 
|  | expected_jacobians_[0][4] = 0.0; | 
|  | expected_jacobians_[0][5] = sum_z; | 
|  | expected_jacobians_[0][6] = sum_y * sum_z; | 
|  |  | 
|  | expected_jacobians_[1].resize(7); | 
|  | expected_jacobians_[1][0] = 0.0; | 
|  | expected_jacobians_[1][1] = 1.0; | 
|  | expected_jacobians_[1][2] = 0.0; | 
|  | expected_jacobians_[1][3] = sum_x; | 
|  | expected_jacobians_[1][4] = sum_z; | 
|  | expected_jacobians_[1][5] = 0.0; | 
|  | expected_jacobians_[1][6] = sum_x * sum_z; | 
|  |  | 
|  | expected_jacobians_[2].resize(7); | 
|  | expected_jacobians_[2][0] = 0.0; | 
|  | expected_jacobians_[2][1] = 2.0; | 
|  | expected_jacobians_[2][2] = 0.0; | 
|  | expected_jacobians_[2][3] = 2.0 * sum_x; | 
|  | expected_jacobians_[2][4] = 2.0 * sum_z; | 
|  | expected_jacobians_[2][5] = 0.0; | 
|  | expected_jacobians_[2][6] = 2.0 * sum_x * sum_z; | 
|  |  | 
|  | expected_jacobians_[3].resize(7); | 
|  | expected_jacobians_[3][0] = 0.0; | 
|  | expected_jacobians_[3][1] = 0.0; | 
|  | expected_jacobians_[3][2] = 1.0; | 
|  | expected_jacobians_[3][3] = 0.0; | 
|  | expected_jacobians_[3][4] = sum_y; | 
|  | expected_jacobians_[3][5] = sum_x; | 
|  | expected_jacobians_[3][6] = sum_x * sum_y; | 
|  |  | 
|  | expected_jacobians_[4].resize(7); | 
|  | expected_jacobians_[4][0] = 0.0; | 
|  | expected_jacobians_[4][1] = 0.0; | 
|  | expected_jacobians_[4][2] = 3.0; | 
|  | expected_jacobians_[4][3] = 0.0; | 
|  | expected_jacobians_[4][4] = 3.0 * sum_y; | 
|  | expected_jacobians_[4][5] = 3.0 * sum_x; | 
|  | expected_jacobians_[4][6] = 3.0 * sum_x * sum_y; | 
|  |  | 
|  | expected_jacobians_[5].resize(7); | 
|  | expected_jacobians_[5][0] = 0.0; | 
|  | expected_jacobians_[5][1] = 0.0; | 
|  | expected_jacobians_[5][2] = 6.0; | 
|  | expected_jacobians_[5][3] = 0.0; | 
|  | expected_jacobians_[5][4] = 6.0 * sum_y; | 
|  | expected_jacobians_[5][5] = 6.0 * sum_x; | 
|  | expected_jacobians_[5][6] = 6.0 * sum_x * sum_y; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | double x0_; | 
|  | double y0_; | 
|  | double y1_; | 
|  | double z0_; | 
|  | double z1_; | 
|  | double z2_; | 
|  |  | 
|  | std::vector<double*> parameter_blocks_; | 
|  |  | 
|  | std::unique_ptr<CostFunction> cost_function_; | 
|  |  | 
|  | std::vector<std::vector<double>> jacobian_vect_; | 
|  |  | 
|  | std::vector<double> expected_residuals_; | 
|  | std::vector<std::vector<double>> expected_jacobians_; | 
|  | }; | 
|  |  | 
|  | TEST_F(SixParameterCostFunctorTest, TestSixParameterResiduals) { | 
|  | std::vector<double> residuals(7, -100000); | 
|  | EXPECT_TRUE(cost_function_->Evaluate( | 
|  | parameter_blocks_.data(), residuals.data(), nullptr)); | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobian) { | 
|  | std::vector<double> residuals(7, -100000); | 
|  |  | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect_[0].data()); | 
|  | jacobian.push_back(jacobian_vect_[1].data()); | 
|  | jacobian.push_back(jacobian_vect_[2].data()); | 
|  | jacobian.push_back(jacobian_vect_[3].data()); | 
|  | jacobian.push_back(jacobian_vect_[4].data()); | 
|  | jacobian.push_back(jacobian_vect_[5].data()); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate( | 
|  | parameter_blocks_.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobianVVCVVC) { | 
|  | std::vector<double> residuals(7, -100000); | 
|  |  | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect_[0].data()); | 
|  | jacobian.push_back(jacobian_vect_[1].data()); | 
|  | jacobian.push_back(nullptr); | 
|  | jacobian.push_back(jacobian_vect_[3].data()); | 
|  | jacobian.push_back(jacobian_vect_[4].data()); | 
|  | jacobian.push_back(nullptr); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate( | 
|  | parameter_blocks_.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | // Skip the constant variables. | 
|  | if (i == 2 || i == 5) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobianVCCVCV) { | 
|  | std::vector<double> residuals(7, -100000); | 
|  |  | 
|  | std::vector<double*> jacobian; | 
|  | jacobian.push_back(jacobian_vect_[0].data()); | 
|  | jacobian.push_back(nullptr); | 
|  | jacobian.push_back(nullptr); | 
|  | jacobian.push_back(jacobian_vect_[3].data()); | 
|  | jacobian.push_back(nullptr); | 
|  | jacobian.push_back(jacobian_vect_[5].data()); | 
|  |  | 
|  | EXPECT_TRUE(cost_function_->Evaluate( | 
|  | parameter_blocks_.data(), residuals.data(), jacobian.data())); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_EQ(expected_residuals_[i], residuals[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | // Skip the constant variables. | 
|  | if (i == 1 || i == 2 || i == 4) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class ValueError { | 
|  | public: | 
|  | explicit ValueError(double target_value) : target_value_(target_value) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* value, T* residual) const { | 
|  | *residual = *value - T(target_value_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | double target_value_; | 
|  | }; | 
|  |  | 
|  | class DynamicValueError { | 
|  | public: | 
|  | explicit DynamicValueError(double target_value) | 
|  | : target_value_(target_value) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(T const* const* parameters, T* residual) const { | 
|  | residual[0] = T(target_value_) - parameters[0][0]; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | double target_value_; | 
|  | }; | 
|  |  | 
|  | TEST(DynamicAutoDiffCostFunction, | 
|  | EvaluateWithEmptyJacobiansArrayComputesResidual) { | 
|  | const double target_value = 1.0; | 
|  | double parameter = 0; | 
|  | ceres::DynamicAutoDiffCostFunction<DynamicValueError, 1> cost_function( | 
|  | new DynamicValueError(target_value)); | 
|  | cost_function.AddParameterBlock(1); | 
|  | cost_function.SetNumResiduals(1); | 
|  |  | 
|  | double* parameter_blocks[1] = {¶meter}; | 
|  | double* jacobians[1] = {nullptr}; | 
|  | double residual; | 
|  |  | 
|  | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks, &residual, jacobians)); | 
|  | EXPECT_EQ(residual, target_value); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |