|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  |  | 
|  | #include "ceres/small_blas.h" | 
|  |  | 
|  | #include <limits> | 
|  | #include "gtest/gtest.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | const double kTolerance = 3.0 * std::numeric_limits<double>::epsilon(); | 
|  |  | 
|  | TEST(BLAS, MatrixMatrixMultiply) { | 
|  | const int kRowA = 3; | 
|  | const int kColA = 5; | 
|  | Matrix A(kRowA, kColA); | 
|  | A.setOnes(); | 
|  |  | 
|  | const int kRowB = 5; | 
|  | const int kColB = 7; | 
|  | Matrix B(kRowB, kColB); | 
|  | B.setOnes(); | 
|  |  | 
|  | for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { | 
|  | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { | 
|  | Matrix C(row_stride_c, col_stride_c); | 
|  | C.setOnes(); | 
|  |  | 
|  | Matrix C_plus = C; | 
|  | Matrix C_minus = C; | 
|  | Matrix C_assign = C; | 
|  |  | 
|  | Matrix C_plus_ref = C; | 
|  | Matrix C_minus_ref = C; | 
|  | Matrix C_assign_ref = C; | 
|  | for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) { | 
|  | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { | 
|  | C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += | 
|  | A * B; | 
|  |  | 
|  | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( | 
|  | A.data(), kRowA, kColA, | 
|  | B.data(), kRowB, kColB, | 
|  | C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
|  |  | 
|  | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) | 
|  | << "C += A * B \n" | 
|  | << "row_stride_c : " << row_stride_c << "\n" | 
|  | << "col_stride_c : " << col_stride_c << "\n" | 
|  | << "start_row_c  : " << start_row_c << "\n" | 
|  | << "start_col_c  : " << start_col_c << "\n" | 
|  | << "Cref : \n" << C_plus_ref << "\n" | 
|  | << "C: \n" << C_plus; | 
|  |  | 
|  |  | 
|  | C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= | 
|  | A * B; | 
|  |  | 
|  | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( | 
|  | A.data(), kRowA, kColA, | 
|  | B.data(), kRowB, kColB, | 
|  | C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
|  |  | 
|  | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) | 
|  | << "C -= A * B \n" | 
|  | << "row_stride_c : " << row_stride_c << "\n" | 
|  | << "col_stride_c : " << col_stride_c << "\n" | 
|  | << "start_row_c  : " << start_row_c << "\n" | 
|  | << "start_col_c  : " << start_col_c << "\n" | 
|  | << "Cref : \n" << C_minus_ref << "\n" | 
|  | << "C: \n" << C_minus; | 
|  |  | 
|  | C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = | 
|  | A * B; | 
|  |  | 
|  | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( | 
|  | A.data(), kRowA, kColA, | 
|  | B.data(), kRowB, kColB, | 
|  | C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
|  |  | 
|  | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) | 
|  | << "C = A * B \n" | 
|  | << "row_stride_c : " << row_stride_c << "\n" | 
|  | << "col_stride_c : " << col_stride_c << "\n" | 
|  | << "start_row_c  : " << start_row_c << "\n" | 
|  | << "start_col_c  : " << start_col_c << "\n" | 
|  | << "Cref : \n" << C_assign_ref << "\n" | 
|  | << "C: \n" << C_assign; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(BLAS, MatrixTransposeMatrixMultiply) { | 
|  | const int kRowA = 5; | 
|  | const int kColA = 3; | 
|  | Matrix A(kRowA, kColA); | 
|  | A.setOnes(); | 
|  |  | 
|  | const int kRowB = 5; | 
|  | const int kColB = 7; | 
|  | Matrix B(kRowB, kColB); | 
|  | B.setOnes(); | 
|  |  | 
|  | for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { | 
|  | for (int col_stride_c = kColB; col_stride_c <  3 * kColB; ++col_stride_c) { | 
|  | Matrix C(row_stride_c, col_stride_c); | 
|  | C.setOnes(); | 
|  |  | 
|  | Matrix C_plus = C; | 
|  | Matrix C_minus = C; | 
|  | Matrix C_assign = C; | 
|  |  | 
|  | Matrix C_plus_ref = C; | 
|  | Matrix C_minus_ref = C; | 
|  | Matrix C_assign_ref = C; | 
|  | for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) { | 
|  | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { | 
|  | C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += | 
|  | A.transpose() * B; | 
|  |  | 
|  | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( | 
|  | A.data(), kRowA, kColA, | 
|  | B.data(), kRowB, kColB, | 
|  | C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
|  |  | 
|  | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) | 
|  | << "C += A' * B \n" | 
|  | << "row_stride_c : " << row_stride_c << "\n" | 
|  | << "col_stride_c : " << col_stride_c << "\n" | 
|  | << "start_row_c  : " << start_row_c << "\n" | 
|  | << "start_col_c  : " << start_col_c << "\n" | 
|  | << "Cref : \n" << C_plus_ref << "\n" | 
|  | << "C: \n" << C_plus; | 
|  |  | 
|  | C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= | 
|  | A.transpose() * B; | 
|  |  | 
|  | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( | 
|  | A.data(), kRowA, kColA, | 
|  | B.data(), kRowB, kColB, | 
|  | C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
|  |  | 
|  | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) | 
|  | << "C -= A' * B \n" | 
|  | << "row_stride_c : " << row_stride_c << "\n" | 
|  | << "col_stride_c : " << col_stride_c << "\n" | 
|  | << "start_row_c  : " << start_row_c << "\n" | 
|  | << "start_col_c  : " << start_col_c << "\n" | 
|  | << "Cref : \n" << C_minus_ref << "\n" | 
|  | << "C: \n" << C_minus; | 
|  |  | 
|  | C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = | 
|  | A.transpose() * B; | 
|  |  | 
|  | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( | 
|  | A.data(), kRowA, kColA, | 
|  | B.data(), kRowB, kColB, | 
|  | C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
|  |  | 
|  | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) | 
|  | << "C = A' * B \n" | 
|  | << "row_stride_c : " << row_stride_c << "\n" | 
|  | << "col_stride_c : " << col_stride_c << "\n" | 
|  | << "start_row_c  : " << start_row_c << "\n" | 
|  | << "start_col_c  : " << start_col_c << "\n" | 
|  | << "Cref : \n" << C_assign_ref << "\n" | 
|  | << "C: \n" << C_assign; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(BLAS, MatrixVectorMultiply) { | 
|  | const int kRowA = 5; | 
|  | const int kColA = 3; | 
|  | Matrix A(kRowA, kColA); | 
|  | A.setOnes(); | 
|  |  | 
|  | Vector b(kColA); | 
|  | b.setOnes(); | 
|  |  | 
|  | Vector c(kRowA); | 
|  | c.setOnes(); | 
|  |  | 
|  | Vector c_plus = c; | 
|  | Vector c_minus = c; | 
|  | Vector c_assign = c; | 
|  |  | 
|  | Vector c_plus_ref = c; | 
|  | Vector c_minus_ref = c; | 
|  | Vector c_assign_ref = c; | 
|  |  | 
|  | c_plus_ref += A * b; | 
|  | MatrixVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA, | 
|  | b.data(), | 
|  | c_plus.data()); | 
|  | EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) | 
|  | << "c += A * b \n" | 
|  | << "c_ref : \n" << c_plus_ref << "\n" | 
|  | << "c: \n" << c_plus; | 
|  |  | 
|  | c_minus_ref -= A * b; | 
|  | MatrixVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA, | 
|  | b.data(), | 
|  | c_minus.data()); | 
|  | EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) | 
|  | << "c += A * b \n" | 
|  | << "c_ref : \n" << c_minus_ref << "\n" | 
|  | << "c: \n" << c_minus; | 
|  |  | 
|  | c_assign_ref = A * b; | 
|  | MatrixVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA, | 
|  | b.data(), | 
|  | c_assign.data()); | 
|  | EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) | 
|  | << "c += A * b \n" | 
|  | << "c_ref : \n" << c_assign_ref << "\n" | 
|  | << "c: \n" << c_assign; | 
|  | } | 
|  |  | 
|  | TEST(BLAS, MatrixTransposeVectorMultiply) { | 
|  | const int kRowA = 5; | 
|  | const int kColA = 3; | 
|  | Matrix A(kRowA, kColA); | 
|  | A.setRandom(); | 
|  |  | 
|  | Vector b(kRowA); | 
|  | b.setRandom(); | 
|  |  | 
|  | Vector c(kColA); | 
|  | c.setOnes(); | 
|  |  | 
|  | Vector c_plus = c; | 
|  | Vector c_minus = c; | 
|  | Vector c_assign = c; | 
|  |  | 
|  | Vector c_plus_ref = c; | 
|  | Vector c_minus_ref = c; | 
|  | Vector c_assign_ref = c; | 
|  |  | 
|  | c_plus_ref += A.transpose() * b; | 
|  | MatrixTransposeVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA, | 
|  | b.data(), | 
|  | c_plus.data()); | 
|  | EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) | 
|  | << "c += A' * b \n" | 
|  | << "c_ref : \n" << c_plus_ref << "\n" | 
|  | << "c: \n" << c_plus; | 
|  |  | 
|  | c_minus_ref -= A.transpose() * b; | 
|  | MatrixTransposeVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA, | 
|  | b.data(), | 
|  | c_minus.data()); | 
|  | EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) | 
|  | << "c += A' * b \n" | 
|  | << "c_ref : \n" << c_minus_ref << "\n" | 
|  | << "c: \n" << c_minus; | 
|  |  | 
|  | c_assign_ref = A.transpose() * b; | 
|  | MatrixTransposeVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA, | 
|  | b.data(), | 
|  | c_assign.data()); | 
|  | EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) | 
|  | << "c += A' * b \n" | 
|  | << "c_ref : \n" << c_assign_ref << "\n" | 
|  | << "c: \n" << c_assign; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |