blob: 4573b6bc6d1c8feedc36fa997ef2579d7c58bcbe [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/inner_product_computer.h"
#include <memory>
#include <numeric>
#include <random>
#include "Eigen/SparseCore"
#include "ceres/block_sparse_matrix.h"
#include "ceres/internal/eigen.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
#define COMPUTE_AND_COMPARE \
{ \
inner_product_computer->Compute(); \
CompressedRowSparseMatrix* actual_product_crsm = \
inner_product_computer->mutable_result(); \
Matrix actual_inner_product = \
Eigen::Map<Eigen::SparseMatrix<double, Eigen::ColMajor>>( \
actual_product_crsm->num_rows(), \
actual_product_crsm->num_rows(), \
actual_product_crsm->num_nonzeros(), \
actual_product_crsm->mutable_rows(), \
actual_product_crsm->mutable_cols(), \
actual_product_crsm->mutable_values()); \
EXPECT_EQ(actual_inner_product.rows(), actual_inner_product.cols()); \
EXPECT_EQ(expected_inner_product.rows(), expected_inner_product.cols()); \
EXPECT_EQ(actual_inner_product.rows(), expected_inner_product.rows()); \
Matrix expected_t, actual_t; \
if (actual_product_crsm->storage_type() == \
CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR) { \
expected_t = expected_inner_product.triangularView<Eigen::Upper>(); \
actual_t = actual_inner_product.triangularView<Eigen::Upper>(); \
} else { \
expected_t = expected_inner_product.triangularView<Eigen::Lower>(); \
actual_t = actual_inner_product.triangularView<Eigen::Lower>(); \
} \
EXPECT_LE((expected_t - actual_t).norm(), \
100 * std::numeric_limits<double>::epsilon() * actual_t.norm()) \
<< "expected: \n" \
<< expected_t << "\nactual: \n" \
<< actual_t; \
}
TEST(InnerProductComputer, NormalOperation) {
const int kMaxNumRowBlocks = 10;
const int kMaxNumColBlocks = 10;
const int kNumTrials = 10;
std::mt19937 prng;
std::uniform_real_distribution<double> distribution(0.01, 1.0);
// Create a random matrix, compute its outer product using Eigen and
// ComputeOuterProduct. Convert both matrices to dense matrices and
// compare their upper triangular parts.
for (int num_row_blocks = 1; num_row_blocks < kMaxNumRowBlocks;
++num_row_blocks) {
for (int num_col_blocks = 1; num_col_blocks < kMaxNumColBlocks;
++num_col_blocks) {
for (int trial = 0; trial < kNumTrials; ++trial) {
BlockSparseMatrix::RandomMatrixOptions options;
options.num_row_blocks = num_row_blocks;
options.num_col_blocks = num_col_blocks;
options.min_row_block_size = 1;
options.max_row_block_size = 5;
options.min_col_block_size = 1;
options.max_col_block_size = 10;
options.block_density = distribution(prng);
VLOG(2) << "num row blocks: " << options.num_row_blocks;
VLOG(2) << "num col blocks: " << options.num_col_blocks;
VLOG(2) << "min row block size: " << options.min_row_block_size;
VLOG(2) << "max row block size: " << options.max_row_block_size;
VLOG(2) << "min col block size: " << options.min_col_block_size;
VLOG(2) << "max col block size: " << options.max_col_block_size;
VLOG(2) << "block density: " << options.block_density;
std::unique_ptr<BlockSparseMatrix> random_matrix(
BlockSparseMatrix::CreateRandomMatrix(options, prng));
TripletSparseMatrix tsm(random_matrix->num_rows(),
random_matrix->num_cols(),
random_matrix->num_nonzeros());
random_matrix->ToTripletSparseMatrix(&tsm);
std::vector<Eigen::Triplet<double>> triplets;
for (int i = 0; i < tsm.num_nonzeros(); ++i) {
triplets.emplace_back(tsm.rows()[i], tsm.cols()[i], tsm.values()[i]);
}
Eigen::SparseMatrix<double> eigen_random_matrix(
random_matrix->num_rows(), random_matrix->num_cols());
eigen_random_matrix.setFromTriplets(triplets.begin(), triplets.end());
Matrix expected_inner_product =
eigen_random_matrix.transpose() * eigen_random_matrix;
std::unique_ptr<InnerProductComputer> inner_product_computer;
inner_product_computer = InnerProductComputer::Create(
*random_matrix,
CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR);
COMPUTE_AND_COMPARE;
inner_product_computer = InnerProductComputer::Create(
*random_matrix,
CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR);
COMPUTE_AND_COMPARE;
}
}
}
}
TEST(InnerProductComputer, SubMatrix) {
const int kNumRowBlocks = 10;
const int kNumColBlocks = 20;
const int kNumTrials = 5;
std::mt19937 prng;
std::uniform_real_distribution<double> distribution(0.01, 1.0);
// Create a random matrix, compute its outer product using Eigen and
// ComputeInnerProductComputer. Convert both matrices to dense matrices and
// compare their upper triangular parts.
for (int trial = 0; trial < kNumTrials; ++trial) {
BlockSparseMatrix::RandomMatrixOptions options;
options.num_row_blocks = kNumRowBlocks;
options.num_col_blocks = kNumColBlocks;
options.min_row_block_size = 1;
options.max_row_block_size = 5;
options.min_col_block_size = 1;
options.max_col_block_size = 10;
options.block_density = distribution(prng);
VLOG(2) << "num row blocks: " << options.num_row_blocks;
VLOG(2) << "num col blocks: " << options.num_col_blocks;
VLOG(2) << "min row block size: " << options.min_row_block_size;
VLOG(2) << "max row block size: " << options.max_row_block_size;
VLOG(2) << "min col block size: " << options.min_col_block_size;
VLOG(2) << "max col block size: " << options.max_col_block_size;
VLOG(2) << "block density: " << options.block_density;
std::unique_ptr<BlockSparseMatrix> random_matrix(
BlockSparseMatrix::CreateRandomMatrix(options, prng));
const std::vector<CompressedRow>& row_blocks =
random_matrix->block_structure()->rows;
const int num_row_blocks = row_blocks.size();
for (int start_row_block = 0; start_row_block < num_row_blocks - 1;
++start_row_block) {
for (int end_row_block = start_row_block + 1;
end_row_block < num_row_blocks;
++end_row_block) {
const int start_row = row_blocks[start_row_block].block.position;
const int end_row = row_blocks[end_row_block].block.position;
TripletSparseMatrix tsm(random_matrix->num_rows(),
random_matrix->num_cols(),
random_matrix->num_nonzeros());
random_matrix->ToTripletSparseMatrix(&tsm);
std::vector<Eigen::Triplet<double>> triplets;
for (int i = 0; i < tsm.num_nonzeros(); ++i) {
if (tsm.rows()[i] >= start_row && tsm.rows()[i] < end_row) {
triplets.emplace_back(
tsm.rows()[i], tsm.cols()[i], tsm.values()[i]);
}
}
Eigen::SparseMatrix<double> eigen_random_matrix(
random_matrix->num_rows(), random_matrix->num_cols());
eigen_random_matrix.setFromTriplets(triplets.begin(), triplets.end());
Matrix expected_inner_product =
eigen_random_matrix.transpose() * eigen_random_matrix;
std::unique_ptr<InnerProductComputer> inner_product_computer;
inner_product_computer = InnerProductComputer::Create(
*random_matrix,
start_row_block,
end_row_block,
CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR);
COMPUTE_AND_COMPARE;
inner_product_computer = InnerProductComputer::Create(
*random_matrix,
start_row_block,
end_row_block,
CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR);
COMPUTE_AND_COMPARE;
}
}
}
}
#undef COMPUTE_AND_COMPARE
} // namespace internal
} // namespace ceres