| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2025 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | //         sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // Templated functions for manipulating rotations. The templated | 
 | // functions are useful when implementing functors for automatic | 
 | // differentiation. | 
 | // | 
 | // In the following, the Quaternions are laid out as 4-vectors, thus: | 
 | // | 
 | //   q[0]  scalar part. | 
 | //   q[1]  coefficient of i. | 
 | //   q[2]  coefficient of j. | 
 | //   q[3]  coefficient of k. | 
 | // | 
 | // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j. | 
 |  | 
 | #ifndef CERES_PUBLIC_ROTATION_H_ | 
 | #define CERES_PUBLIC_ROTATION_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 |  | 
 | #include "absl/log/check.h" | 
 | #include "ceres/constants.h" | 
 | #include "ceres/internal/euler_angles.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | // Trivial wrapper to index linear arrays as matrices, given a fixed | 
 | // column and row stride. When an array "T* array" is wrapped by a | 
 | // | 
 | //   (const) MatrixAdapter<T, row_stride, col_stride> M" | 
 | // | 
 | // the expression  M(i, j) is equivalent to | 
 | // | 
 | //   array[i * row_stride + j * col_stride] | 
 | // | 
 | // Conversion functions to and from rotation matrices accept | 
 | // MatrixAdapters to permit using row-major and column-major layouts, | 
 | // and rotation matrices embedded in larger matrices (such as a 3x4 | 
 | // projection matrix). | 
 | template <typename T, int row_stride, int col_stride> | 
 | struct MatrixAdapter; | 
 |  | 
 | // Convenience functions to create a MatrixAdapter that treats the | 
 | // array pointed to by "pointer" as a 3x3 (contiguous) column-major or | 
 | // row-major matrix. | 
 | template <typename T> | 
 | MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer); | 
 |  | 
 | template <typename T> | 
 | MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer); | 
 |  | 
 | // Convert a value in combined axis-angle representation to a quaternion. | 
 | // The value angle_axis is a triple whose norm is an angle in radians, | 
 | // and whose direction is aligned with the axis of rotation, | 
 | // and quaternion is a 4-tuple that will contain the resulting quaternion. | 
 | // The implementation may be used with auto-differentiation up to the first | 
 | // derivative, higher derivatives may have unexpected results near the origin. | 
 | template <typename T> | 
 | void AngleAxisToQuaternion(const T* angle_axis, T* quaternion); | 
 |  | 
 | // Convert a quaternion to the equivalent combined axis-angle representation. | 
 | // The value quaternion must be a unit quaternion - it is not normalized first, | 
 | // and angle_axis will be filled with a value whose norm is the angle of | 
 | // rotation in radians, and whose direction is the axis of rotation. | 
 | // The implementation may be used with auto-differentiation up to the first | 
 | // derivative, higher derivatives may have unexpected results near the origin. | 
 | template <typename T> | 
 | void QuaternionToAngleAxis(const T* quaternion, T* angle_axis); | 
 |  | 
 | // Conversions between 3x3 rotation matrix (in column major order) and | 
 | // quaternion rotation representations. Templated for use with | 
 | // autodifferentiation. | 
 | template <typename T> | 
 | void RotationMatrixToQuaternion(const T* R, T* quaternion); | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | void RotationMatrixToQuaternion( | 
 |     const MatrixAdapter<const T, row_stride, col_stride>& R, T* quaternion); | 
 |  | 
 | // Conversions between 3x3 rotation matrix (in column major order) and | 
 | // axis-angle rotation representations. Templated for use with | 
 | // autodifferentiation. | 
 | template <typename T> | 
 | void RotationMatrixToAngleAxis(const T* R, T* angle_axis); | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | void RotationMatrixToAngleAxis( | 
 |     const MatrixAdapter<const T, row_stride, col_stride>& R, T* angle_axis); | 
 |  | 
 | template <typename T> | 
 | void AngleAxisToRotationMatrix(const T* angle_axis, T* R); | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | void AngleAxisToRotationMatrix( | 
 |     const T* angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R); | 
 |  | 
 | // Conversions between 3x3 rotation matrix (in row major order) and | 
 | // Euler angle (in degrees) rotation representations. | 
 | // | 
 | // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z} | 
 | // axes, respectively.  They are applied in that same order, so the | 
 | // total rotation R is Rz * Ry * Rx. | 
 | template <typename T> | 
 | void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R); | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | void EulerAnglesToRotationMatrix( | 
 |     const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R); | 
 |  | 
 | // Convert a generic Euler Angle sequence (in radians) to a 3x3 rotation matrix. | 
 | // | 
 | // Euler Angles define a sequence of 3 rotations about a sequence of axes, | 
 | // typically taken to be the X, Y, or Z axes. The last axis may be the same as | 
 | // the first axis (e.g. ZYZ) per Euler's original definition of his angles | 
 | // (proper Euler angles) or not (e.g. ZYX / yaw-pitch-roll), per common usage in | 
 | // the nautical and aerospace fields (Tait-Bryan angles). The three rotations | 
 | // may be in a global frame of reference (Extrinsic) or in a body fixed frame of | 
 | // reference (Intrinsic) that moves with the rotating object. | 
 | // | 
 | // Internally, Euler Axis sequences are classified by Ken Shoemake's scheme from | 
 | // "Euler angle conversion", Graphics Gems IV, where a choice of axis for the | 
 | // first rotation and 3 binary choices: | 
 | // 1. Parity of the axis permutation. The axis sequence has Even parity if the | 
 | // second axis of rotation is 'greater-than' the first axis of rotation | 
 | // according to the order X<Y<Z<X, otherwise it has Odd parity. | 
 | // 2. Proper Euler Angles v.s. Tait-Bryan Angles | 
 | // 3. Extrinsic Rotations v.s. Intrinsic Rotations | 
 | // compactly represent all 24 possible Euler Angle Conventions | 
 | // | 
 | // One template parameter: EulerSystem must be explicitly given. This parameter | 
 | // is a tag named by 'Extrinsic' or 'Intrinsic' followed by three characters in | 
 | // the set '[XYZ]', specifying the axis sequence, e.g. ceres::ExtrinsicYZY | 
 | // (robotic arms), ceres::IntrinsicZYX (for aerospace), etc. | 
 | // | 
 | // The order of elements in the input array 'euler' follows the axis sequence | 
 | template <typename EulerSystem, typename T> | 
 | inline void EulerAnglesToRotation(const T* euler, T* R); | 
 |  | 
 | template <typename EulerSystem, typename T, int row_stride, int col_stride> | 
 | void EulerAnglesToRotation(const T* euler, | 
 |                            const MatrixAdapter<T, row_stride, col_stride>& R); | 
 |  | 
 | // Convert a 3x3 rotation matrix to a generic Euler Angle sequence (in radians) | 
 | // | 
 | // Euler Angles define a sequence of 3 rotations about a sequence of axes, | 
 | // typically taken to be the X, Y, or Z axes. The last axis may be the same as | 
 | // the first axis (e.g. ZYZ) per Euler's original definition of his angles | 
 | // (proper Euler angles) or not (e.g. ZYX / yaw-pitch-roll), per common usage in | 
 | // the nautical and aerospace fields (Tait-Bryan angles). The three rotations | 
 | // may be in a global frame of reference (Extrinsic) or in a body fixed frame of | 
 | // reference (Intrinsic) that moves with the rotating object. | 
 | // | 
 | // Internally, Euler Axis sequences are classified by Ken Shoemake's scheme from | 
 | // "Euler angle conversion", Graphics Gems IV, where a choice of axis for the | 
 | // first rotation and 3 binary choices: | 
 | // 1. Oddness of the axis permutation, that defines whether the second axis is | 
 | // 'greater-than' the first axis according to the order X>Y>Z>X) | 
 | // 2. Proper Euler Angles v.s. Tait-Bryan Angles | 
 | // 3. Extrinsic Rotations v.s. Intrinsic Rotations | 
 | // compactly represent all 24 possible Euler Angle Conventions | 
 | // | 
 | // One template parameter: EulerSystem must be explicitly given. This parameter | 
 | // is a tag named by 'Extrinsic' or 'Intrinsic' followed by three characters in | 
 | // the set '[XYZ]', specifying the axis sequence, e.g. ceres::ExtrinsicYZY | 
 | // (robotic arms), ceres::IntrinsicZYX (for aerospace), etc. | 
 | // | 
 | // The order of elements in the output array 'euler' follows the axis sequence | 
 | template <typename EulerSystem, typename T> | 
 | inline void RotationMatrixToEulerAngles(const T* R, T* euler); | 
 |  | 
 | template <typename EulerSystem, typename T, int row_stride, int col_stride> | 
 | void RotationMatrixToEulerAngles( | 
 |     const MatrixAdapter<const T, row_stride, col_stride>& R, T* euler); | 
 |  | 
 | // Convert a 4-vector to a 3x3 scaled rotation matrix. | 
 | // | 
 | // The choice of rotation is such that the quaternion [1 0 0 0] goes to an | 
 | // identity matrix and for small a, b, c the quaternion [1 a b c] goes to | 
 | // the matrix | 
 | // | 
 | //         [  0 -c  b ] | 
 | //   I + 2 [  c  0 -a ] + higher order terms | 
 | //         [ -b  a  0 ] | 
 | // | 
 | // which corresponds to a Rodrigues approximation, the last matrix being | 
 | // the cross-product matrix of [a b c]. Together with the property that | 
 | // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R. | 
 | // | 
 | // No normalization of the quaternion is performed, i.e. | 
 | // R = ||q||^2 * Q, where Q is an orthonormal matrix | 
 | // such that det(Q) = 1 and Q*Q' = I | 
 | // | 
 | // WARNING: The rotation matrix is ROW MAJOR | 
 | template <typename T> | 
 | inline void QuaternionToScaledRotation(const T q[4], T R[3 * 3]); | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | inline void QuaternionToScaledRotation( | 
 |     const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R); | 
 |  | 
 | // Same as above except that the rotation matrix is normalized by the | 
 | // Frobenius norm, so that R * R' = I (and det(R) = 1). | 
 | // | 
 | // WARNING: The rotation matrix is ROW MAJOR | 
 | template <typename T> | 
 | inline void QuaternionToRotation(const T q[4], T R[3 * 3]); | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | inline void QuaternionToRotation( | 
 |     const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R); | 
 |  | 
 | // Rotates a point pt by a quaternion q: | 
 | // | 
 | //   result = R(q) * pt | 
 | // | 
 | // Assumes the quaternion is unit norm. This assumption allows us to | 
 | // write the transform as (something)*pt + pt, as is clear from the | 
 | // formula below. If you pass in a quaternion with |q|^2 = 2 then you | 
 | // WILL NOT get back 2 times the result you get for a unit quaternion. | 
 | // | 
 | // Inplace rotation is not supported. pt and result must point to different | 
 | // memory locations, otherwise the result will be undefined. | 
 | template <typename T> | 
 | inline void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]); | 
 |  | 
 | // With this function you do not need to assume that q has unit norm. | 
 | // It does assume that the norm is non-zero. | 
 | // | 
 | // Inplace rotation is not supported. pt and result must point to different | 
 | // memory locations, otherwise the result will be undefined. | 
 | template <typename T> | 
 | inline void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]); | 
 |  | 
 | // zw = z * w, where * is the Quaternion product between 4 vectors. | 
 | // | 
 | // Inplace quaternion product is not supported. The resulting quaternion zw must | 
 | // not share the memory with the input quaternion z and w, otherwise the result | 
 | // will be undefined. | 
 | template <typename T> | 
 | inline void QuaternionProduct(const T z[4], const T w[4], T zw[4]); | 
 |  | 
 | // xy = x cross y; | 
 | // | 
 | // Inplace cross product is not supported. The resulting vector x_cross_y must | 
 | // not share the memory with the input vectors x and y, otherwise the result | 
 | // will be undefined. | 
 | template <typename T> | 
 | inline void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]); | 
 |  | 
 | template <typename T> | 
 | inline T DotProduct(const T x[3], const T y[3]); | 
 |  | 
 | // y = R(angle_axis) * x; | 
 | // | 
 | // Inplace rotation is not supported. pt and result must point to different | 
 | // memory locations, otherwise the result will be undefined. | 
 | template <typename T> | 
 | inline void AngleAxisRotatePoint(const T angle_axis[3], | 
 |                                  const T pt[3], | 
 |                                  T result[3]); | 
 |  | 
 | // --- IMPLEMENTATION | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | struct MatrixAdapter { | 
 |   T* pointer_; | 
 |   explicit MatrixAdapter(T* pointer) : pointer_(pointer) {} | 
 |  | 
 |   T& operator()(int r, int c) const { | 
 |     return pointer_[r * row_stride + c * col_stride]; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) { | 
 |   return MatrixAdapter<T, 1, 3>(pointer); | 
 | } | 
 |  | 
 | template <typename T> | 
 | MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) { | 
 |   return MatrixAdapter<T, 3, 1>(pointer); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) { | 
 |   using std::fpclassify; | 
 |   using std::hypot; | 
 |   const T& a0 = angle_axis[0]; | 
 |   const T& a1 = angle_axis[1]; | 
 |   const T& a2 = angle_axis[2]; | 
 |  | 
 |   T k; | 
 |   const T theta = hypot(a0, a1, a2); | 
 |  | 
 |   // For points not at the origin, the full conversion is numerically stable. | 
 |   if (fpclassify(theta) != FP_ZERO) { | 
 |     const T half_theta = theta * T(0.5); | 
 |     k = sin(half_theta) / theta; | 
 |     quaternion[0] = cos(half_theta); | 
 |   } else { | 
 |     // At the origin, sqrt() will produce NaN in the derivative since | 
 |     // the argument is zero.  By approximating with a Taylor series, | 
 |     // and truncating at one term, the value and first derivatives will be | 
 |     // computed correctly when Jets are used. | 
 |     k = T(0.5); | 
 |     quaternion[0] = T(1.0); | 
 |   } | 
 |  | 
 |   quaternion[1] = a0 * k; | 
 |   quaternion[2] = a1 * k; | 
 |   quaternion[3] = a2 * k; | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) { | 
 |   using std::fpclassify; | 
 |   using std::hypot; | 
 |   const T& q1 = quaternion[1]; | 
 |   const T& q2 = quaternion[2]; | 
 |   const T& q3 = quaternion[3]; | 
 |  | 
 |   T k; | 
 |   const T sin_theta = hypot(q1, q2, q3); | 
 |  | 
 |   // For quaternions representing non-zero rotation, the conversion | 
 |   // is numerically stable. | 
 |   if (fpclassify(sin_theta) != FP_ZERO) { | 
 |     const T& cos_theta = quaternion[0]; | 
 |  | 
 |     // If cos_theta is negative, theta is greater than pi/2, which | 
 |     // means that angle for the angle_axis vector which is 2 * theta | 
 |     // would be greater than pi. | 
 |     // | 
 |     // While this will result in the correct rotation, it does not | 
 |     // result in a normalized angle-axis vector. | 
 |     // | 
 |     // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi, | 
 |     // which is equivalent saying | 
 |     // | 
 |     //   theta - pi = atan(sin(theta - pi), cos(theta - pi)) | 
 |     //              = atan(-sin(theta), -cos(theta)) | 
 |     // | 
 |     const T sign = copysign(T(1), cos_theta); | 
 |     const T two_theta = T(2.0) * atan2(sign * sin_theta, sign * cos_theta); | 
 |     k = two_theta / sin_theta; | 
 |   } else { | 
 |     // For zero rotation, sqrt() will produce NaN in the derivative since | 
 |     // the argument is zero.  By approximating with a Taylor series, | 
 |     // and truncating at one term, the value and first derivatives will be | 
 |     // computed correctly when Jets are used. | 
 |     k = T(2.0); | 
 |   } | 
 |  | 
 |   angle_axis[0] = q1 * k; | 
 |   angle_axis[1] = q2 * k; | 
 |   angle_axis[2] = q3 * k; | 
 | } | 
 |  | 
 | template <typename T> | 
 | void RotationMatrixToQuaternion(const T* R, T* quaternion) { | 
 |   RotationMatrixToQuaternion(ColumnMajorAdapter3x3(R), quaternion); | 
 | } | 
 |  | 
 | // This algorithm comes from "Quaternion Calculus and Fast Animation", | 
 | // Ken Shoemake, 1987 SIGGRAPH course notes | 
 | template <typename T, int row_stride, int col_stride> | 
 | void RotationMatrixToQuaternion( | 
 |     const MatrixAdapter<const T, row_stride, col_stride>& R, T* quaternion) { | 
 |   const T trace = R(0, 0) + R(1, 1) + R(2, 2); | 
 |   if (trace >= 0.0) { | 
 |     T t = sqrt(trace + T(1.0)); | 
 |     quaternion[0] = T(0.5) * t; | 
 |     t = T(0.5) / t; | 
 |     quaternion[1] = (R(2, 1) - R(1, 2)) * t; | 
 |     quaternion[2] = (R(0, 2) - R(2, 0)) * t; | 
 |     quaternion[3] = (R(1, 0) - R(0, 1)) * t; | 
 |   } else { | 
 |     int i = 0; | 
 |     if (R(1, 1) > R(0, 0)) { | 
 |       i = 1; | 
 |     } | 
 |  | 
 |     if (R(2, 2) > R(i, i)) { | 
 |       i = 2; | 
 |     } | 
 |  | 
 |     const int j = (i + 1) % 3; | 
 |     const int k = (j + 1) % 3; | 
 |     T t = sqrt(R(i, i) - R(j, j) - R(k, k) + T(1.0)); | 
 |     quaternion[i + 1] = T(0.5) * t; | 
 |     t = T(0.5) / t; | 
 |     quaternion[0] = (R(k, j) - R(j, k)) * t; | 
 |     quaternion[j + 1] = (R(j, i) + R(i, j)) * t; | 
 |     quaternion[k + 1] = (R(k, i) + R(i, k)) * t; | 
 |   } | 
 | } | 
 |  | 
 | // The conversion of a rotation matrix to the angle-axis form is | 
 | // numerically problematic when then rotation angle is close to zero | 
 | // or to Pi. The following implementation detects when these two cases | 
 | // occurs and deals with them by taking code paths that are guaranteed | 
 | // to not perform division by a small number. | 
 | template <typename T> | 
 | inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) { | 
 |   RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis); | 
 | } | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | void RotationMatrixToAngleAxis( | 
 |     const MatrixAdapter<const T, row_stride, col_stride>& R, T* angle_axis) { | 
 |   T quaternion[4]; | 
 |   RotationMatrixToQuaternion(R, quaternion); | 
 |   QuaternionToAngleAxis(quaternion, angle_axis); | 
 |   return; | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) { | 
 |   AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R)); | 
 | } | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | void AngleAxisToRotationMatrix( | 
 |     const T* angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R) { | 
 |   using std::fpclassify; | 
 |   using std::hypot; | 
 |   static const T kOne = T(1.0); | 
 |   const T theta = hypot(angle_axis[0], angle_axis[1], angle_axis[2]); | 
 |   if (fpclassify(theta) != FP_ZERO) { | 
 |     // We want to be careful to only evaluate the square root if the | 
 |     // norm of the angle_axis vector is greater than zero. Otherwise | 
 |     // we get a division by zero. | 
 |     const T wx = angle_axis[0] / theta; | 
 |     const T wy = angle_axis[1] / theta; | 
 |     const T wz = angle_axis[2] / theta; | 
 |  | 
 |     const T costheta = cos(theta); | 
 |     const T sintheta = sin(theta); | 
 |  | 
 |     // clang-format off | 
 |     R(0, 0) =     costheta   + wx*wx*(kOne -    costheta); | 
 |     R(1, 0) =  wz*sintheta   + wx*wy*(kOne -    costheta); | 
 |     R(2, 0) = -wy*sintheta   + wx*wz*(kOne -    costheta); | 
 |     R(0, 1) =  wx*wy*(kOne - costheta)     - wz*sintheta; | 
 |     R(1, 1) =     costheta   + wy*wy*(kOne -    costheta); | 
 |     R(2, 1) =  wx*sintheta   + wy*wz*(kOne -    costheta); | 
 |     R(0, 2) =  wy*sintheta   + wx*wz*(kOne -    costheta); | 
 |     R(1, 2) = -wx*sintheta   + wy*wz*(kOne -    costheta); | 
 |     R(2, 2) =     costheta   + wz*wz*(kOne -    costheta); | 
 |     // clang-format on | 
 |   } else { | 
 |     // At zero, we switch to using the first order Taylor expansion. | 
 |     R(0, 0) = kOne; | 
 |     R(1, 0) = angle_axis[2]; | 
 |     R(2, 0) = -angle_axis[1]; | 
 |     R(0, 1) = -angle_axis[2]; | 
 |     R(1, 1) = kOne; | 
 |     R(2, 1) = angle_axis[0]; | 
 |     R(0, 2) = angle_axis[1]; | 
 |     R(1, 2) = -angle_axis[0]; | 
 |     R(2, 2) = kOne; | 
 |   } | 
 | } | 
 |  | 
 | template <typename EulerSystem, typename T> | 
 | inline void EulerAnglesToRotation(const T* euler, T* R) { | 
 |   EulerAnglesToRotation<EulerSystem>(euler, RowMajorAdapter3x3(R)); | 
 | } | 
 |  | 
 | template <typename EulerSystem, typename T, int row_stride, int col_stride> | 
 | void EulerAnglesToRotation(const T* euler, | 
 |                            const MatrixAdapter<T, row_stride, col_stride>& R) { | 
 |   using std::cos; | 
 |   using std::sin; | 
 |  | 
 |   const auto [i, j, k] = EulerSystem::kAxes; | 
 |  | 
 |   T ea[3]; | 
 |   ea[1] = euler[1]; | 
 |   if constexpr (EulerSystem::kIsIntrinsic) { | 
 |     ea[0] = euler[2]; | 
 |     ea[2] = euler[0]; | 
 |   } else { | 
 |     ea[0] = euler[0]; | 
 |     ea[2] = euler[2]; | 
 |   } | 
 |   if constexpr (EulerSystem::kIsParityOdd) { | 
 |     ea[0] = -ea[0]; | 
 |     ea[1] = -ea[1]; | 
 |     ea[2] = -ea[2]; | 
 |   } | 
 |  | 
 |   const T ci = cos(ea[0]); | 
 |   const T cj = cos(ea[1]); | 
 |   const T ch = cos(ea[2]); | 
 |   const T si = sin(ea[0]); | 
 |   const T sj = sin(ea[1]); | 
 |   const T sh = sin(ea[2]); | 
 |   const T cc = ci * ch; | 
 |   const T cs = ci * sh; | 
 |   const T sc = si * ch; | 
 |   const T ss = si * sh; | 
 |   if constexpr (EulerSystem::kIsProperEuler) { | 
 |     R(i, i) = cj; | 
 |     R(i, j) = sj * si; | 
 |     R(i, k) = sj * ci; | 
 |     R(j, i) = sj * sh; | 
 |     R(j, j) = -cj * ss + cc; | 
 |     R(j, k) = -cj * cs - sc; | 
 |     R(k, i) = -sj * ch; | 
 |     R(k, j) = cj * sc + cs; | 
 |     R(k, k) = cj * cc - ss; | 
 |   } else { | 
 |     R(i, i) = cj * ch; | 
 |     R(i, j) = sj * sc - cs; | 
 |     R(i, k) = sj * cc + ss; | 
 |     R(j, i) = cj * sh; | 
 |     R(j, j) = sj * ss + cc; | 
 |     R(j, k) = sj * cs - sc; | 
 |     R(k, i) = -sj; | 
 |     R(k, j) = cj * si; | 
 |     R(k, k) = cj * ci; | 
 |   } | 
 | } | 
 |  | 
 | template <typename EulerSystem, typename T> | 
 | inline void RotationMatrixToEulerAngles(const T* R, T* euler) { | 
 |   RotationMatrixToEulerAngles<EulerSystem>(RowMajorAdapter3x3(R), euler); | 
 | } | 
 |  | 
 | template <typename EulerSystem, typename T, int row_stride, int col_stride> | 
 | void RotationMatrixToEulerAngles( | 
 |     const MatrixAdapter<const T, row_stride, col_stride>& R, T* euler) { | 
 |   using std::atan2; | 
 |   using std::fpclassify; | 
 |   using std::hypot; | 
 |  | 
 |   const auto [i, j, k] = EulerSystem::kAxes; | 
 |  | 
 |   T ea[3]; | 
 |   if constexpr (EulerSystem::kIsProperEuler) { | 
 |     const T sy = hypot(R(i, j), R(i, k)); | 
 |     if (fpclassify(sy) != FP_ZERO) { | 
 |       ea[0] = atan2(R(i, j), R(i, k)); | 
 |       ea[1] = atan2(sy, R(i, i)); | 
 |       ea[2] = atan2(R(j, i), -R(k, i)); | 
 |     } else { | 
 |       ea[0] = atan2(-R(j, k), R(j, j)); | 
 |       ea[1] = atan2(sy, R(i, i)); | 
 |       ea[2] = T(0.0); | 
 |     } | 
 |   } else { | 
 |     const T cy = hypot(R(i, i), R(j, i)); | 
 |     if (fpclassify(cy) != FP_ZERO) { | 
 |       ea[0] = atan2(R(k, j), R(k, k)); | 
 |       ea[1] = atan2(-R(k, i), cy); | 
 |       ea[2] = atan2(R(j, i), R(i, i)); | 
 |     } else { | 
 |       ea[0] = atan2(-R(j, k), R(j, j)); | 
 |       ea[1] = atan2(-R(k, i), cy); | 
 |       ea[2] = T(0.0); | 
 |     } | 
 |   } | 
 |   if constexpr (EulerSystem::kIsParityOdd) { | 
 |     ea[0] = -ea[0]; | 
 |     ea[1] = -ea[1]; | 
 |     ea[2] = -ea[2]; | 
 |   } | 
 |   euler[1] = ea[1]; | 
 |   if constexpr (EulerSystem::kIsIntrinsic) { | 
 |     euler[0] = ea[2]; | 
 |     euler[2] = ea[0]; | 
 |   } else { | 
 |     euler[0] = ea[0]; | 
 |     euler[2] = ea[2]; | 
 |   } | 
 |  | 
 |   // Proper euler angles are defined for angles in | 
 |   //   [-pi, pi) x [0, pi / 2) x [-pi, pi) | 
 |   // which is enforced here | 
 |   if constexpr (EulerSystem::kIsProperEuler) { | 
 |     const T kPi(constants::pi); | 
 |     const T kTwoPi(2.0 * kPi); | 
 |     if (euler[1] < T(0.0) || ea[1] > kPi) { | 
 |       euler[0] += kPi; | 
 |       euler[1] = -euler[1]; | 
 |       euler[2] -= kPi; | 
 |     } | 
 |  | 
 |     for (int i = 0; i < 3; ++i) { | 
 |       if (euler[i] < -kPi) { | 
 |         euler[i] += kTwoPi; | 
 |       } else if (euler[i] > kPi) { | 
 |         euler[i] -= kTwoPi; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void EulerAnglesToRotationMatrix(const T* euler, | 
 |                                         const int row_stride_parameter, | 
 |                                         T* R) { | 
 |   EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R)); | 
 | } | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | void EulerAnglesToRotationMatrix( | 
 |     const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R) { | 
 |   const double kPi = 3.14159265358979323846; | 
 |   const T degrees_to_radians(kPi / 180.0); | 
 |  | 
 |   const T pitch(euler[0] * degrees_to_radians); | 
 |   const T roll(euler[1] * degrees_to_radians); | 
 |   const T yaw(euler[2] * degrees_to_radians); | 
 |  | 
 |   const T c1 = cos(yaw); | 
 |   const T s1 = sin(yaw); | 
 |   const T c2 = cos(roll); | 
 |   const T s2 = sin(roll); | 
 |   const T c3 = cos(pitch); | 
 |   const T s3 = sin(pitch); | 
 |  | 
 |   R(0, 0) = c1 * c2; | 
 |   R(0, 1) = -s1 * c3 + c1 * s2 * s3; | 
 |   R(0, 2) = s1 * s3 + c1 * s2 * c3; | 
 |  | 
 |   R(1, 0) = s1 * c2; | 
 |   R(1, 1) = c1 * c3 + s1 * s2 * s3; | 
 |   R(1, 2) = -c1 * s3 + s1 * s2 * c3; | 
 |  | 
 |   R(2, 0) = -s2; | 
 |   R(2, 1) = c2 * s3; | 
 |   R(2, 2) = c2 * c3; | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) { | 
 |   QuaternionToScaledRotation(q, RowMajorAdapter3x3(R)); | 
 | } | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | inline void QuaternionToScaledRotation( | 
 |     const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) { | 
 |   // Make convenient names for elements of q. | 
 |   T a = q[0]; | 
 |   T b = q[1]; | 
 |   T c = q[2]; | 
 |   T d = q[3]; | 
 |   // This is not to eliminate common sub-expression, but to | 
 |   // make the lines shorter so that they fit in 80 columns! | 
 |   T aa = a * a; | 
 |   T ab = a * b; | 
 |   T ac = a * c; | 
 |   T ad = a * d; | 
 |   T bb = b * b; | 
 |   T bc = b * c; | 
 |   T bd = b * d; | 
 |   T cc = c * c; | 
 |   T cd = c * d; | 
 |   T dd = d * d; | 
 |  | 
 |   // clang-format off | 
 |   R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad);  R(0, 2) = T(2) * (ac + bd); | 
 |   R(1, 0) = T(2) * (ad + bc);  R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab); | 
 |   R(2, 0) = T(2) * (bd - ac);  R(2, 1) = T(2) * (ab + cd);  R(2, 2) = aa - bb - cc + dd; | 
 |   // clang-format on | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void QuaternionToRotation(const T q[4], T R[3 * 3]) { | 
 |   QuaternionToRotation(q, RowMajorAdapter3x3(R)); | 
 | } | 
 |  | 
 | template <typename T, int row_stride, int col_stride> | 
 | inline void QuaternionToRotation( | 
 |     const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) { | 
 |   QuaternionToScaledRotation(q, R); | 
 |  | 
 |   T normalizer = q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]; | 
 |   normalizer = T(1) / normalizer; | 
 |  | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       R(i, j) *= normalizer; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void UnitQuaternionRotatePoint(const T q[4], | 
 |                                       const T pt[3], | 
 |                                       T result[3]) { | 
 |   DCHECK_NE(pt, result) << "Inplace rotation is not supported."; | 
 |  | 
 |   // clang-format off | 
 |   T uv0 = q[2] * pt[2] - q[3] * pt[1]; | 
 |   T uv1 = q[3] * pt[0] - q[1] * pt[2]; | 
 |   T uv2 = q[1] * pt[1] - q[2] * pt[0]; | 
 |   uv0 += uv0; | 
 |   uv1 += uv1; | 
 |   uv2 += uv2; | 
 |   result[0] = pt[0] + q[0] * uv0; | 
 |   result[1] = pt[1] + q[0] * uv1; | 
 |   result[2] = pt[2] + q[0] * uv2; | 
 |   result[0] += q[2] * uv2 - q[3] * uv1; | 
 |   result[1] += q[3] * uv0 - q[1] * uv2; | 
 |   result[2] += q[1] * uv1 - q[2] * uv0; | 
 |   // clang-format on | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) { | 
 |   DCHECK_NE(pt, result) << "Inplace rotation is not supported."; | 
 |  | 
 |   // 'scale' is 1 / norm(q). | 
 |   const T scale = | 
 |       T(1) / sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]); | 
 |  | 
 |   // Make unit-norm version of q. | 
 |   const T unit[4] = { | 
 |       scale * q[0], | 
 |       scale * q[1], | 
 |       scale * q[2], | 
 |       scale * q[3], | 
 |   }; | 
 |  | 
 |   UnitQuaternionRotatePoint(unit, pt, result); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void QuaternionProduct(const T z[4], const T w[4], T zw[4]) { | 
 |   DCHECK_NE(z, zw) << "Inplace quaternion product is not supported."; | 
 |   DCHECK_NE(w, zw) << "Inplace quaternion product is not supported."; | 
 |  | 
 |   // clang-format off | 
 |   zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3]; | 
 |   zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2]; | 
 |   zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1]; | 
 |   zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0]; | 
 |   // clang-format on | 
 | } | 
 |  | 
 | // xy = x cross y; | 
 | template <typename T> | 
 | inline void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) { | 
 |   DCHECK_NE(x, x_cross_y) << "Inplace cross product is not supported."; | 
 |   DCHECK_NE(y, x_cross_y) << "Inplace cross product is not supported."; | 
 |  | 
 |   x_cross_y[0] = x[1] * y[2] - x[2] * y[1]; | 
 |   x_cross_y[1] = x[2] * y[0] - x[0] * y[2]; | 
 |   x_cross_y[2] = x[0] * y[1] - x[1] * y[0]; | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline T DotProduct(const T x[3], const T y[3]) { | 
 |   return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void AngleAxisRotatePoint(const T angle_axis[3], | 
 |                                  const T pt[3], | 
 |                                  T result[3]) { | 
 |   DCHECK_NE(pt, result) << "Inplace rotation is not supported."; | 
 |   using std::fpclassify; | 
 |   using std::hypot; | 
 |  | 
 |   const T theta = hypot(angle_axis[0], angle_axis[1], angle_axis[2]); | 
 |  | 
 |   if (fpclassify(theta) != FP_ZERO) { | 
 |     // Away from zero, use the rodriguez formula | 
 |     // | 
 |     //   result = pt costheta + | 
 |     //            (w x pt) * sintheta + | 
 |     //            w (w . pt) (1 - costheta) | 
 |     // | 
 |     // We want to be careful to only evaluate the square root if the | 
 |     // norm of the angle_axis vector is greater than zero. Otherwise | 
 |     // we get a division by zero. | 
 |     // | 
 |     const T costheta = cos(theta); | 
 |     const T sintheta = sin(theta); | 
 |     const T theta_inverse = T(1.0) / theta; | 
 |  | 
 |     const T w[3] = {angle_axis[0] * theta_inverse, | 
 |                     angle_axis[1] * theta_inverse, | 
 |                     angle_axis[2] * theta_inverse}; | 
 |  | 
 |     // Explicitly inlined evaluation of the cross product for | 
 |     // performance reasons. | 
 |     const T w_cross_pt[3] = {w[1] * pt[2] - w[2] * pt[1], | 
 |                              w[2] * pt[0] - w[0] * pt[2], | 
 |                              w[0] * pt[1] - w[1] * pt[0]}; | 
 |     const T tmp = | 
 |         (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta); | 
 |  | 
 |     result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp; | 
 |     result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp; | 
 |     result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp; | 
 |   } else { | 
 |     // At zero, the first order Taylor approximation of the rotation | 
 |     // matrix R corresponding to a vector w and angle theta is | 
 |     // | 
 |     //   R = I + hat(w) * sin(theta) | 
 |     // | 
 |     // But sintheta ~ theta and theta * w = angle_axis, which gives us | 
 |     // | 
 |     //  R = I + hat(angle_axis) | 
 |     // | 
 |     // and actually performing multiplication with the point pt, gives us | 
 |     // R * pt = pt + angle_axis x pt. | 
 |     // | 
 |     // Switching to the Taylor expansion at zero provides meaningful | 
 |     // derivatives when evaluated using Jets. | 
 |     // | 
 |     // Explicitly inlined evaluation of the cross product for | 
 |     // performance reasons. | 
 |     const T w_cross_pt[3] = {angle_axis[1] * pt[2] - angle_axis[2] * pt[1], | 
 |                              angle_axis[2] * pt[0] - angle_axis[0] * pt[2], | 
 |                              angle_axis[0] * pt[1] - angle_axis[1] * pt[0]}; | 
 |  | 
 |     result[0] = pt[0] + w_cross_pt[0]; | 
 |     result[1] = pt[1] + w_cross_pt[1]; | 
 |     result[2] = pt[2] + w_cross_pt[2]; | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_ROTATION_H_ |