NIST/ITL StRD | |
Dataset Name: MGH17 (MGH17.dat) | |
File Format: ASCII | |
Starting Values (lines 41 to 45) | |
Certified Values (lines 41 to 50) | |
Data (lines 61 to 93) | |
Procedure: Nonlinear Least Squares Regression | |
Description: This problem was found to be difficult for some very | |
good algorithms. | |
See More, J. J., Garbow, B. S., and Hillstrom, K. E. | |
(1981). Testing unconstrained optimization software. | |
ACM Transactions on Mathematical Software. 7(1): | |
pp. 17-41. | |
Reference: Osborne, M. R. (1972). | |
Some aspects of nonlinear least squares | |
calculations. In Numerical Methods for Nonlinear | |
Optimization, Lootsma (Ed). | |
New York, NY: Academic Press, pp. 171-189. | |
Data: 1 Response (y) | |
1 Predictor (x) | |
33 Observations | |
Average Level of Difficulty | |
Generated Data | |
Model: Exponential Class | |
5 Parameters (b1 to b5) | |
y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5] + e | |
Starting values Certified Values | |
Start 1 Start 2 Parameter Standard Deviation | |
b1 = 50 0.5 3.7541005211E-01 2.0723153551E-03 | |
b2 = 150 1.5 1.9358469127E+00 2.2031669222E-01 | |
b3 = -100 -1 -1.4646871366E+00 2.2175707739E-01 | |
b4 = 1 0.01 1.2867534640E-02 4.4861358114E-04 | |
b5 = 2 0.02 2.2122699662E-02 8.9471996575E-04 | |
Residual Sum of Squares: 5.4648946975E-05 | |
Residual Standard Deviation: 1.3970497866E-03 | |
Degrees of Freedom: 28 | |
Number of Observations: 33 | |
Data: y x | |
8.440000E-01 0.000000E+00 | |
9.080000E-01 1.000000E+01 | |
9.320000E-01 2.000000E+01 | |
9.360000E-01 3.000000E+01 | |
9.250000E-01 4.000000E+01 | |
9.080000E-01 5.000000E+01 | |
8.810000E-01 6.000000E+01 | |
8.500000E-01 7.000000E+01 | |
8.180000E-01 8.000000E+01 | |
7.840000E-01 9.000000E+01 | |
7.510000E-01 1.000000E+02 | |
7.180000E-01 1.100000E+02 | |
6.850000E-01 1.200000E+02 | |
6.580000E-01 1.300000E+02 | |
6.280000E-01 1.400000E+02 | |
6.030000E-01 1.500000E+02 | |
5.800000E-01 1.600000E+02 | |
5.580000E-01 1.700000E+02 | |
5.380000E-01 1.800000E+02 | |
5.220000E-01 1.900000E+02 | |
5.060000E-01 2.000000E+02 | |
4.900000E-01 2.100000E+02 | |
4.780000E-01 2.200000E+02 | |
4.670000E-01 2.300000E+02 | |
4.570000E-01 2.400000E+02 | |
4.480000E-01 2.500000E+02 | |
4.380000E-01 2.600000E+02 | |
4.310000E-01 2.700000E+02 | |
4.240000E-01 2.800000E+02 | |
4.200000E-01 2.900000E+02 | |
4.140000E-01 3.000000E+02 | |
4.110000E-01 3.100000E+02 | |
4.060000E-01 3.200000E+02 |