|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_EIGEN_VECTOR_OPS_H_ | 
|  | #define CERES_INTERNAL_EIGEN_VECTOR_OPS_H_ | 
|  |  | 
|  | #include <numeric> | 
|  |  | 
|  | #include "absl/container/fixed_array.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/parallel_for.h" | 
|  | #include "ceres/parallel_vector_ops.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | // Blas1 operations on Eigen vectors. These functions are needed as an | 
|  | // abstraction layer so that we can use different versions of a vector style | 
|  | // object in the conjugate gradients linear solver. | 
|  | template <typename Derived> | 
|  | inline double Norm(const Eigen::DenseBase<Derived>& x, | 
|  | ContextImpl* context, | 
|  | int num_threads) { | 
|  | absl::FixedArray<double> norms(num_threads, 0.); | 
|  | ParallelFor( | 
|  | context, | 
|  | 0, | 
|  | x.rows(), | 
|  | num_threads, | 
|  | [&x, &norms](int thread_id, std::tuple<int, int> range) { | 
|  | auto [start, end] = range; | 
|  | norms[thread_id] += x.segment(start, end - start).squaredNorm(); | 
|  | }, | 
|  | kMinBlockSizeParallelVectorOps); | 
|  | return std::sqrt(std::accumulate(norms.begin(), norms.end(), 0.)); | 
|  | } | 
|  | inline void SetZero(Vector& x, ContextImpl* context, int num_threads) { | 
|  | ParallelSetZero(context, num_threads, x); | 
|  | } | 
|  | inline void Axpby(double a, | 
|  | const Vector& x, | 
|  | double b, | 
|  | const Vector& y, | 
|  | Vector& z, | 
|  | ContextImpl* context, | 
|  | int num_threads) { | 
|  | ParallelAssign(context, num_threads, z, a * x + b * y); | 
|  | } | 
|  | template <typename VectorLikeX, typename VectorLikeY> | 
|  | inline double Dot(const VectorLikeX& x, | 
|  | const VectorLikeY& y, | 
|  | ContextImpl* context, | 
|  | int num_threads) { | 
|  | absl::FixedArray<double> dots(num_threads, 0.); | 
|  | ParallelFor( | 
|  | context, | 
|  | 0, | 
|  | x.rows(), | 
|  | num_threads, | 
|  | [&x, &y, &dots](int thread_id, std::tuple<int, int> range) { | 
|  | auto [start, end] = range; | 
|  | const int block_size = end - start; | 
|  | const auto& x_block = x.segment(start, block_size); | 
|  | const auto& y_block = y.segment(start, block_size); | 
|  | dots[thread_id] += x_block.dot(y_block); | 
|  | }, | 
|  | kMinBlockSizeParallelVectorOps); | 
|  | return std::accumulate(dots.begin(), dots.end(), 0.); | 
|  | } | 
|  | inline void Copy(const Vector& from, | 
|  | Vector& to, | 
|  | ContextImpl* context, | 
|  | int num_threads) { | 
|  | ParallelAssign(context, num_threads, to, from); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #endif  // CERES_INTERNAL_EIGEN_VECTOR_OPS_H_ |