| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |
| #define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |
| |
| #include <memory> |
| #include <random> |
| #include <vector> |
| |
| #include "ceres/internal/disable_warnings.h" |
| #include "ceres/internal/export.h" |
| #include "ceres/sparse_matrix.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| |
| struct CRSMatrix; |
| |
| namespace internal { |
| |
| class TripletSparseMatrix; |
| |
| class CERES_NO_EXPORT CompressedRowSparseMatrix : public SparseMatrix { |
| public: |
| enum class StorageType { |
| UNSYMMETRIC, |
| // Matrix is assumed to be symmetric but only the lower triangular |
| // part of the matrix is stored. |
| LOWER_TRIANGULAR, |
| // Matrix is assumed to be symmetric but only the upper triangular |
| // part of the matrix is stored. |
| UPPER_TRIANGULAR |
| }; |
| |
| // Create a matrix with the same content as the TripletSparseMatrix |
| // input. We assume that input does not have any repeated |
| // entries. |
| // |
| // The storage type of the matrix is set to UNSYMMETRIC. |
| static std::unique_ptr<CompressedRowSparseMatrix> FromTripletSparseMatrix( |
| const TripletSparseMatrix& input); |
| |
| // Create a matrix with the same content as the TripletSparseMatrix |
| // input transposed. We assume that input does not have any repeated |
| // entries. |
| // |
| // The storage type of the matrix is set to UNSYMMETRIC. |
| static std::unique_ptr<CompressedRowSparseMatrix> |
| FromTripletSparseMatrixTransposed(const TripletSparseMatrix& input); |
| |
| // Use this constructor only if you know what you are doing. This |
| // creates a "blank" matrix with the appropriate amount of memory |
| // allocated. However, the object itself is in an inconsistent state |
| // as the rows and cols matrices do not match the values of |
| // num_rows, num_cols and max_num_nonzeros. |
| // |
| // The use case for this constructor is that when the user knows the |
| // size of the matrix to begin with and wants to update the layout |
| // manually, instead of going via the indirect route of first |
| // constructing a TripletSparseMatrix, which leads to more than |
| // double the peak memory usage. |
| // |
| // The storage type is set to UNSYMMETRIC. |
| CompressedRowSparseMatrix(int num_rows, int num_cols, int max_num_nonzeros); |
| |
| // Build a square sparse diagonal matrix with num_rows rows and |
| // columns. The diagonal m(i,i) = diagonal(i); |
| // |
| // The storage type is set to UNSYMMETRIC |
| CompressedRowSparseMatrix(const double* diagonal, int num_rows); |
| |
| // SparseMatrix interface. |
| ~CompressedRowSparseMatrix() override; |
| void SetZero() final; |
| void RightMultiplyAndAccumulate(const double* x, double* y) const final; |
| void LeftMultiplyAndAccumulate(const double* x, double* y) const final; |
| void SquaredColumnNorm(double* x) const final; |
| void ScaleColumns(const double* scale) final; |
| void ToDenseMatrix(Matrix* dense_matrix) const final; |
| void ToTextFile(FILE* file) const final; |
| int num_rows() const final { return num_rows_; } |
| int num_cols() const final { return num_cols_; } |
| int num_nonzeros() const final { return rows_[num_rows_]; } |
| const double* values() const final { return &values_[0]; } |
| double* mutable_values() final { return &values_[0]; } |
| |
| // Delete the bottom delta_rows. |
| // num_rows -= delta_rows |
| void DeleteRows(int delta_rows); |
| |
| // Append the contents of m to the bottom of this matrix. m must |
| // have the same number of columns as this matrix. |
| void AppendRows(const CompressedRowSparseMatrix& m); |
| |
| void ToCRSMatrix(CRSMatrix* matrix) const; |
| |
| std::unique_ptr<CompressedRowSparseMatrix> Transpose() const; |
| |
| // Destructive array resizing method. |
| void SetMaxNumNonZeros(int num_nonzeros); |
| |
| // Non-destructive array resizing method. |
| void set_num_rows(const int num_rows) { num_rows_ = num_rows; } |
| void set_num_cols(const int num_cols) { num_cols_ = num_cols; } |
| |
| // Low level access methods that expose the structure of the matrix. |
| const int* cols() const { return &cols_[0]; } |
| int* mutable_cols() { return &cols_[0]; } |
| |
| const int* rows() const { return &rows_[0]; } |
| int* mutable_rows() { return &rows_[0]; } |
| |
| StorageType storage_type() const { return storage_type_; } |
| void set_storage_type(const StorageType storage_type) { |
| storage_type_ = storage_type; |
| } |
| |
| const std::vector<int>& row_blocks() const { return row_blocks_; } |
| std::vector<int>* mutable_row_blocks() { return &row_blocks_; } |
| |
| const std::vector<int>& col_blocks() const { return col_blocks_; } |
| std::vector<int>* mutable_col_blocks() { return &col_blocks_; } |
| |
| // Create a block diagonal CompressedRowSparseMatrix with the given |
| // block structure. The individual blocks are assumed to be laid out |
| // contiguously in the diagonal array, one block at a time. |
| static std::unique_ptr<CompressedRowSparseMatrix> CreateBlockDiagonalMatrix( |
| const double* diagonal, const std::vector<int>& blocks); |
| |
| // Options struct to control the generation of random block sparse |
| // matrices in compressed row sparse format. |
| // |
| // The random matrix generation proceeds as follows. |
| // |
| // First the row and column block structure is determined by |
| // generating random row and column block sizes that lie within the |
| // given bounds. |
| // |
| // Then we walk the block structure of the resulting matrix, and with |
| // probability block_density determine whether they are structurally |
| // zero or not. If the answer is no, then we generate entries for the |
| // block which are distributed normally. |
| struct RandomMatrixOptions { |
| // Type of matrix to create. |
| // |
| // If storage_type is UPPER_TRIANGULAR (LOWER_TRIANGULAR), then |
| // create a square symmetric matrix with just the upper triangular |
| // (lower triangular) part. In this case, num_col_blocks, |
| // min_col_block_size and max_col_block_size will be ignored and |
| // assumed to be equal to the corresponding row settings. |
| StorageType storage_type = StorageType::UNSYMMETRIC; |
| |
| int num_row_blocks = 0; |
| int min_row_block_size = 0; |
| int max_row_block_size = 0; |
| int num_col_blocks = 0; |
| int min_col_block_size = 0; |
| int max_col_block_size = 0; |
| |
| // 0 < block_density <= 1 is the probability of a block being |
| // present in the matrix. A given random matrix will not have |
| // precisely this density. |
| double block_density = 0.0; |
| }; |
| |
| // Create a random CompressedRowSparseMatrix whose entries are |
| // normally distributed and whose structure is determined by |
| // RandomMatrixOptions. |
| static std::unique_ptr<CompressedRowSparseMatrix> CreateRandomMatrix( |
| RandomMatrixOptions options, std::mt19937& prng); |
| |
| private: |
| static std::unique_ptr<CompressedRowSparseMatrix> FromTripletSparseMatrix( |
| const TripletSparseMatrix& input, bool transpose); |
| |
| int num_rows_; |
| int num_cols_; |
| std::vector<int> rows_; |
| std::vector<int> cols_; |
| std::vector<double> values_; |
| StorageType storage_type_; |
| |
| // If the matrix has an underlying block structure, then it can also |
| // carry with it row and column block sizes. This is auxiliary and |
| // optional information for use by algorithms operating on the |
| // matrix. The class itself does not make use of this information in |
| // any way. |
| std::vector<int> row_blocks_; |
| std::vector<int> col_blocks_; |
| }; |
| |
| inline std::ostream& operator<<(std::ostream& s, |
| CompressedRowSparseMatrix::StorageType type) { |
| switch (type) { |
| case CompressedRowSparseMatrix::StorageType::UNSYMMETRIC: |
| s << "UNSYMMETRIC"; |
| break; |
| case CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR: |
| s << "UPPER_TRIANGULAR"; |
| break; |
| case CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR: |
| s << "LOWER_TRIANGULAR"; |
| break; |
| default: |
| s << "UNKNOWN CompressedRowSparseMatrix::StorageType"; |
| } |
| return s; |
| } |
| } // namespace internal |
| } // namespace ceres |
| |
| #include "ceres/internal/reenable_warnings.h" |
| |
| #endif // CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |