blob: 6ae856f2f22a839e0591fd2c75cbac4b632de94f [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/schur_eliminator.h"
#include <algorithm>
#include <memory>
#include <random>
#include <vector>
#include "Eigen/Dense"
#include "ceres/block_random_access_dense_matrix.h"
#include "ceres/block_sparse_matrix.h"
#include "ceres/block_structure.h"
#include "ceres/casts.h"
#include "ceres/context_impl.h"
#include "ceres/detect_structure.h"
#include "ceres/internal/eigen.h"
#include "ceres/linear_least_squares_problems.h"
#include "ceres/test_util.h"
#include "ceres/triplet_sparse_matrix.h"
#include "ceres/types.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
// TODO(sameeragarwal): Reduce the size of these tests and redo the
// parameterization to be more efficient.
namespace ceres::internal {
class SchurEliminatorTest : public ::testing::Test {
protected:
void SetUpFromId(int id) {
auto problem = CreateLinearLeastSquaresProblemFromId(id);
CHECK(problem != nullptr);
SetupHelper(problem.get());
}
void SetupHelper(LinearLeastSquaresProblem* problem) {
A.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
b = std::move(problem->b);
D = std::move(problem->D);
num_eliminate_blocks = problem->num_eliminate_blocks;
num_eliminate_cols = 0;
const CompressedRowBlockStructure* bs = A->block_structure();
for (int i = 0; i < num_eliminate_blocks; ++i) {
num_eliminate_cols += bs->cols[i].size;
}
}
// Compute the golden values for the reduced linear system and the
// solution to the linear least squares problem using dense linear
// algebra.
void ComputeReferenceSolution(const Vector& D) {
Matrix J;
A->ToDenseMatrix(&J);
VectorRef f(b.get(), J.rows());
Matrix H = (D.cwiseProduct(D)).asDiagonal();
H.noalias() += J.transpose() * J;
const Vector g = J.transpose() * f;
const int schur_size = J.cols() - num_eliminate_cols;
lhs_expected.resize(schur_size, schur_size);
lhs_expected.setZero();
rhs_expected.resize(schur_size);
rhs_expected.setZero();
sol_expected.resize(J.cols());
sol_expected.setZero();
Matrix P = H.block(0, 0, num_eliminate_cols, num_eliminate_cols);
Matrix Q = H.block(0, num_eliminate_cols, num_eliminate_cols, schur_size);
Matrix R =
H.block(num_eliminate_cols, num_eliminate_cols, schur_size, schur_size);
int row = 0;
const CompressedRowBlockStructure* bs = A->block_structure();
for (int i = 0; i < num_eliminate_blocks; ++i) {
const int block_size = bs->cols[i].size;
P.block(row, row, block_size, block_size) =
P.block(row, row, block_size, block_size)
.llt()
.solve(Matrix::Identity(block_size, block_size));
row += block_size;
}
lhs_expected.triangularView<Eigen::Upper>() = R - Q.transpose() * P * Q;
rhs_expected =
g.tail(schur_size) - Q.transpose() * P * g.head(num_eliminate_cols);
sol_expected = H.llt().solve(g);
}
void EliminateSolveAndCompare(const VectorRef& diagonal,
bool use_static_structure,
const double relative_tolerance) {
const CompressedRowBlockStructure* bs = A->block_structure();
const int num_col_blocks = bs->cols.size();
auto blocks = Tail(bs->cols, num_col_blocks - num_eliminate_blocks);
BlockRandomAccessDenseMatrix lhs(blocks, &context_, 1);
const int num_cols = A->num_cols();
const int schur_size = lhs.num_rows();
Vector rhs(schur_size);
LinearSolver::Options options;
options.context = &context_;
options.elimination_groups.push_back(num_eliminate_blocks);
if (use_static_structure) {
DetectStructure(*bs,
num_eliminate_blocks,
&options.row_block_size,
&options.e_block_size,
&options.f_block_size);
}
std::unique_ptr<SchurEliminatorBase> eliminator =
SchurEliminatorBase::Create(options);
const bool kFullRankETE = true;
eliminator->Init(num_eliminate_blocks, kFullRankETE, A->block_structure());
eliminator->Eliminate(
BlockSparseMatrixData(*A), b.get(), diagonal.data(), &lhs, rhs.data());
MatrixRef lhs_ref(lhs.mutable_values(), lhs.num_rows(), lhs.num_cols());
Vector reduced_sol =
lhs_ref.selfadjointView<Eigen::Upper>().llt().solve(rhs);
// Solution to the linear least squares problem.
Vector sol(num_cols);
sol.setZero();
sol.tail(schur_size) = reduced_sol;
eliminator->BackSubstitute(BlockSparseMatrixData(*A),
b.get(),
diagonal.data(),
reduced_sol.data(),
sol.data());
Matrix delta = (lhs_ref - lhs_expected).selfadjointView<Eigen::Upper>();
double diff = delta.norm();
EXPECT_NEAR(diff / lhs_expected.norm(), 0.0, relative_tolerance);
EXPECT_NEAR((rhs - rhs_expected).norm() / rhs_expected.norm(),
0.0,
relative_tolerance);
EXPECT_NEAR((sol - sol_expected).norm() / sol_expected.norm(),
0.0,
relative_tolerance);
}
ContextImpl context_;
std::unique_ptr<BlockSparseMatrix> A;
std::unique_ptr<double[]> b;
std::unique_ptr<double[]> D;
int num_eliminate_blocks;
int num_eliminate_cols;
Matrix lhs_expected;
Vector rhs_expected;
Vector sol_expected;
};
TEST_F(SchurEliminatorTest, ScalarProblemNoRegularization) {
SetUpFromId(2);
Vector zero(A->num_cols());
zero.setZero();
ComputeReferenceSolution(VectorRef(zero.data(), A->num_cols()));
EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), true, 1e-14);
EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), false, 1e-14);
}
TEST_F(SchurEliminatorTest, ScalarProblemWithRegularization) {
SetUpFromId(2);
ComputeReferenceSolution(VectorRef(D.get(), A->num_cols()));
EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14);
EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14);
}
TEST_F(SchurEliminatorTest, VaryingFBlockSizeWithStaticStructure) {
SetUpFromId(4);
ComputeReferenceSolution(VectorRef(D.get(), A->num_cols()));
EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14);
}
TEST_F(SchurEliminatorTest, VaryingFBlockSizeWithoutStaticStructure) {
SetUpFromId(4);
ComputeReferenceSolution(VectorRef(D.get(), A->num_cols()));
EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14);
}
TEST(SchurEliminatorForOneFBlock, MatchesSchurEliminator) {
constexpr int kRowBlockSize = 2;
constexpr int kEBlockSize = 3;
constexpr int kFBlockSize = 6;
constexpr int num_e_blocks = 5;
ContextImpl context;
auto* bs = new CompressedRowBlockStructure;
bs->cols.resize(num_e_blocks + 1);
int col_pos = 0;
for (int i = 0; i < num_e_blocks; ++i) {
bs->cols[i].position = col_pos;
bs->cols[i].size = kEBlockSize;
col_pos += kEBlockSize;
}
bs->cols.back().position = col_pos;
bs->cols.back().size = kFBlockSize;
bs->rows.resize(2 * num_e_blocks + 1);
int row_pos = 0;
int cell_pos = 0;
for (int i = 0; i < num_e_blocks; ++i) {
{
auto& row = bs->rows[2 * i];
row.block.position = row_pos;
row.block.size = kRowBlockSize;
row_pos += kRowBlockSize;
auto& cells = row.cells;
cells.resize(2);
cells[0].block_id = i;
cells[0].position = cell_pos;
cell_pos += kRowBlockSize * kEBlockSize;
cells[1].block_id = num_e_blocks;
cells[1].position = cell_pos;
cell_pos += kRowBlockSize * kFBlockSize;
}
{
auto& row = bs->rows[2 * i + 1];
row.block.position = row_pos;
row.block.size = kRowBlockSize;
row_pos += kRowBlockSize;
auto& cells = row.cells;
cells.resize(1);
cells[0].block_id = i;
cells[0].position = cell_pos;
cell_pos += kRowBlockSize * kEBlockSize;
}
}
{
auto& row = bs->rows.back();
row.block.position = row_pos;
row.block.size = kEBlockSize;
row_pos += kRowBlockSize;
auto& cells = row.cells;
cells.resize(1);
cells[0].block_id = num_e_blocks;
cells[0].position = cell_pos;
cell_pos += kEBlockSize * kEBlockSize;
}
BlockSparseMatrix matrix(bs);
double* values = matrix.mutable_values();
std::mt19937 prng;
std::normal_distribution<> standard_normal;
std::generate_n(values, matrix.num_nonzeros(), [&prng, &standard_normal] {
return standard_normal(prng);
});
Vector b(matrix.num_rows());
b.setRandom();
Vector diagonal(matrix.num_cols());
diagonal.setOnes();
std::vector<Block> blocks;
blocks.emplace_back(kFBlockSize, 0);
BlockRandomAccessDenseMatrix actual_lhs(blocks, &context, 1);
BlockRandomAccessDenseMatrix expected_lhs(blocks, &context, 1);
Vector actual_rhs(kFBlockSize);
Vector expected_rhs(kFBlockSize);
Vector f_sol(kFBlockSize);
f_sol.setRandom();
Vector actual_e_sol(num_e_blocks * kEBlockSize);
actual_e_sol.setZero();
Vector expected_e_sol(num_e_blocks * kEBlockSize);
expected_e_sol.setZero();
{
LinearSolver::Options linear_solver_options;
linear_solver_options.e_block_size = kEBlockSize;
linear_solver_options.row_block_size = kRowBlockSize;
linear_solver_options.f_block_size = kFBlockSize;
linear_solver_options.context = &context;
std::unique_ptr<SchurEliminatorBase> eliminator(
SchurEliminatorBase::Create(linear_solver_options));
eliminator->Init(num_e_blocks, true, matrix.block_structure());
eliminator->Eliminate(BlockSparseMatrixData(matrix),
b.data(),
diagonal.data(),
&expected_lhs,
expected_rhs.data());
eliminator->BackSubstitute(BlockSparseMatrixData(matrix),
b.data(),
diagonal.data(),
f_sol.data(),
actual_e_sol.data());
}
{
SchurEliminatorForOneFBlock<2, 3, 6> eliminator;
eliminator.Init(num_e_blocks, true, matrix.block_structure());
eliminator.Eliminate(BlockSparseMatrixData(matrix),
b.data(),
diagonal.data(),
&actual_lhs,
actual_rhs.data());
eliminator.BackSubstitute(BlockSparseMatrixData(matrix),
b.data(),
diagonal.data(),
f_sol.data(),
expected_e_sol.data());
}
ConstMatrixRef actual_lhsref(
actual_lhs.values(), actual_lhs.num_cols(), actual_lhs.num_cols());
ConstMatrixRef expected_lhsref(
expected_lhs.values(), actual_lhs.num_cols(), actual_lhs.num_cols());
EXPECT_NEAR((actual_lhsref - expected_lhsref).norm() / expected_lhsref.norm(),
0.0,
1e-12)
<< "expected: \n"
<< expected_lhsref << "\nactual: \n"
<< actual_lhsref;
EXPECT_NEAR(
(actual_rhs - expected_rhs).norm() / expected_rhs.norm(), 0.0, 1e-12)
<< "expected: \n"
<< expected_rhs << "\nactual: \n"
<< actual_rhs;
EXPECT_NEAR((actual_e_sol - expected_e_sol).norm() / expected_e_sol.norm(),
0.0,
1e-12)
<< "expected: \n"
<< expected_e_sol << "\nactual: \n"
<< actual_e_sol;
}
} // namespace ceres::internal