| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/manifold.h" |
| |
| #include <cmath> |
| #include <limits> |
| #include <memory> |
| #include <utility> |
| |
| #include "Eigen/Geometry" |
| #include "ceres/dynamic_numeric_diff_cost_function.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/line_manifold.h" |
| #include "ceres/manifold_test_utils.h" |
| #include "ceres/numeric_diff_options.h" |
| #include "ceres/product_manifold.h" |
| #include "ceres/rotation.h" |
| #include "ceres/sphere_manifold.h" |
| #include "ceres/types.h" |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| constexpr int kNumTrials = 1000; |
| constexpr double kTolerance = 1e-9; |
| |
| TEST(EuclideanManifold, StaticNormalFunctionTest) { |
| EuclideanManifold<3> manifold; |
| EXPECT_EQ(manifold.AmbientSize(), 3); |
| EXPECT_EQ(manifold.TangentSize(), 3); |
| |
| Vector zero_tangent = Vector::Zero(manifold.TangentSize()); |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(manifold.AmbientSize()); |
| const Vector y = Vector::Random(manifold.AmbientSize()); |
| Vector delta = Vector::Random(manifold.TangentSize()); |
| Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); |
| |
| manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); |
| EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(), |
| 0.0, |
| kTolerance); |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(EuclideanManifold, DynamicNormalFunctionTest) { |
| EuclideanManifold<DYNAMIC> manifold(3); |
| EXPECT_EQ(manifold.AmbientSize(), 3); |
| EXPECT_EQ(manifold.TangentSize(), 3); |
| |
| Vector zero_tangent = Vector::Zero(manifold.TangentSize()); |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(manifold.AmbientSize()); |
| const Vector y = Vector::Random(manifold.AmbientSize()); |
| Vector delta = Vector::Random(manifold.TangentSize()); |
| Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); |
| |
| manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); |
| EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(), |
| 0.0, |
| kTolerance); |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(SubsetManifold, EmptyConstantParameters) { |
| SubsetManifold manifold(3, {}); |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(3); |
| const Vector y = Vector::Random(3); |
| Vector delta = Vector::Random(3); |
| Vector x_plus_delta = Vector::Zero(3); |
| |
| manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); |
| EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(), |
| 0.0, |
| kTolerance); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(SubsetManifold, NegativeParameterIndexDeathTest) { |
| EXPECT_DEATH_IF_SUPPORTED(SubsetManifold manifold(2, {-1}), |
| "greater than equal to zero"); |
| } |
| |
| TEST(SubsetManifold, GreaterThanSizeParameterIndexDeathTest) { |
| EXPECT_DEATH_IF_SUPPORTED(SubsetManifold manifold(2, {2}), |
| "less than the size"); |
| } |
| |
| TEST(SubsetManifold, DuplicateParametersDeathTest) { |
| EXPECT_DEATH_IF_SUPPORTED(SubsetManifold manifold(2, {1, 1}), "duplicates"); |
| } |
| |
| TEST(SubsetManifold, NormalFunctionTest) { |
| const int kAmbientSize = 4; |
| const int kTangentSize = 3; |
| |
| for (int i = 0; i < kAmbientSize; ++i) { |
| SubsetManifold manifold_with_ith_parameter_constant(kAmbientSize, {i}); |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(kAmbientSize); |
| Vector y = Vector::Random(kAmbientSize); |
| // x and y must have the same i^th coordinate to be on the manifold. |
| y[i] = x[i]; |
| Vector delta = Vector::Random(kTangentSize); |
| Vector x_plus_delta = Vector::Zero(kAmbientSize); |
| |
| x_plus_delta.setZero(); |
| manifold_with_ith_parameter_constant.Plus( |
| x.data(), delta.data(), x_plus_delta.data()); |
| int k = 0; |
| for (int j = 0; j < kAmbientSize; ++j) { |
| if (j == i) { |
| EXPECT_EQ(x_plus_delta[j], x[j]); |
| } else { |
| EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]); |
| } |
| } |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD( |
| manifold_with_ith_parameter_constant, x, delta, y, kTolerance); |
| } |
| } |
| } |
| |
| TEST(ProductManifold, Size2) { |
| SubsetManifold manifold1(5, {2}); |
| SubsetManifold manifold2(3, {0, 1}); |
| ProductManifold<SubsetManifold, SubsetManifold> manifold(manifold1, |
| manifold2); |
| |
| EXPECT_EQ(manifold.AmbientSize(), |
| manifold1.AmbientSize() + manifold2.AmbientSize()); |
| EXPECT_EQ(manifold.TangentSize(), |
| manifold1.TangentSize() + manifold2.TangentSize()); |
| } |
| |
| TEST(ProductManifold, Size3) { |
| SubsetManifold manifold1(5, {2}); |
| SubsetManifold manifold2(3, {0, 1}); |
| SubsetManifold manifold3(4, {1}); |
| |
| ProductManifold<SubsetManifold, SubsetManifold, SubsetManifold> manifold( |
| manifold1, manifold2, manifold3); |
| |
| EXPECT_EQ(manifold.AmbientSize(), |
| manifold1.AmbientSize() + manifold2.AmbientSize() + |
| manifold3.AmbientSize()); |
| EXPECT_EQ(manifold.TangentSize(), |
| manifold1.TangentSize() + manifold2.TangentSize() + |
| manifold3.TangentSize()); |
| } |
| |
| TEST(ProductManifold, Size4) { |
| SubsetManifold manifold1(5, {2}); |
| SubsetManifold manifold2(3, {0, 1}); |
| SubsetManifold manifold3(4, {1}); |
| SubsetManifold manifold4(2, {0}); |
| |
| ProductManifold<SubsetManifold, |
| SubsetManifold, |
| SubsetManifold, |
| SubsetManifold> |
| manifold(manifold1, manifold2, manifold3, manifold4); |
| |
| EXPECT_EQ(manifold.AmbientSize(), |
| manifold1.AmbientSize() + manifold2.AmbientSize() + |
| manifold3.AmbientSize() + manifold4.AmbientSize()); |
| EXPECT_EQ(manifold.TangentSize(), |
| manifold1.TangentSize() + manifold2.TangentSize() + |
| manifold3.TangentSize() + manifold4.TangentSize()); |
| } |
| |
| TEST(ProductManifold, NormalFunctionTest) { |
| SubsetManifold manifold1(5, {2}); |
| SubsetManifold manifold2(3, {0, 1}); |
| SubsetManifold manifold3(4, {1}); |
| SubsetManifold manifold4(2, {0}); |
| |
| ProductManifold<SubsetManifold, |
| SubsetManifold, |
| SubsetManifold, |
| SubsetManifold> |
| manifold(manifold1, manifold2, manifold3, manifold4); |
| |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(manifold.AmbientSize()); |
| Vector delta = Vector::Random(manifold.TangentSize()); |
| Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); |
| Vector x_plus_delta_expected = Vector::Zero(manifold.AmbientSize()); |
| |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); |
| |
| int ambient_cursor = 0; |
| int tangent_cursor = 0; |
| |
| EXPECT_TRUE(manifold1.Plus(&x[ambient_cursor], |
| &delta[tangent_cursor], |
| &x_plus_delta_expected[ambient_cursor])); |
| ambient_cursor += manifold1.AmbientSize(); |
| tangent_cursor += manifold1.TangentSize(); |
| |
| EXPECT_TRUE(manifold2.Plus(&x[ambient_cursor], |
| &delta[tangent_cursor], |
| &x_plus_delta_expected[ambient_cursor])); |
| ambient_cursor += manifold2.AmbientSize(); |
| tangent_cursor += manifold2.TangentSize(); |
| |
| EXPECT_TRUE(manifold3.Plus(&x[ambient_cursor], |
| &delta[tangent_cursor], |
| &x_plus_delta_expected[ambient_cursor])); |
| ambient_cursor += manifold3.AmbientSize(); |
| tangent_cursor += manifold3.TangentSize(); |
| |
| EXPECT_TRUE(manifold4.Plus(&x[ambient_cursor], |
| &delta[tangent_cursor], |
| &x_plus_delta_expected[ambient_cursor])); |
| ambient_cursor += manifold4.AmbientSize(); |
| tangent_cursor += manifold4.TangentSize(); |
| |
| for (int i = 0; i < x.size(); ++i) { |
| EXPECT_EQ(x_plus_delta[i], x_plus_delta_expected[i]); |
| } |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD( |
| manifold, x, delta, x_plus_delta, kTolerance); |
| } |
| } |
| |
| TEST(ProductManifold, ZeroTangentSizeAndEuclidean) { |
| SubsetManifold subset_manifold(1, {0}); |
| EuclideanManifold<2> euclidean_manifold; |
| ProductManifold<SubsetManifold, EuclideanManifold<2>> manifold( |
| subset_manifold, euclidean_manifold); |
| EXPECT_EQ(manifold.AmbientSize(), 3); |
| EXPECT_EQ(manifold.TangentSize(), 2); |
| |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(3); |
| Vector y = Vector::Random(3); |
| y[0] = x[0]; |
| Vector delta = Vector::Random(2); |
| Vector x_plus_delta = Vector::Zero(3); |
| |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); |
| |
| EXPECT_EQ(x_plus_delta[0], x[0]); |
| EXPECT_EQ(x_plus_delta[1], x[1] + delta[0]); |
| EXPECT_EQ(x_plus_delta[2], x[2] + delta[1]); |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(ProductManifold, EuclideanAndZeroTangentSize) { |
| SubsetManifold subset_manifold(1, {0}); |
| EuclideanManifold<2> euclidean_manifold; |
| ProductManifold<EuclideanManifold<2>, SubsetManifold> manifold( |
| euclidean_manifold, subset_manifold); |
| EXPECT_EQ(manifold.AmbientSize(), 3); |
| EXPECT_EQ(manifold.TangentSize(), 2); |
| |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(3); |
| Vector y = Vector::Random(3); |
| y[2] = x[2]; |
| Vector delta = Vector::Random(2); |
| Vector x_plus_delta = Vector::Zero(3); |
| |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); |
| EXPECT_EQ(x_plus_delta[0], x[0] + delta[0]); |
| EXPECT_EQ(x_plus_delta[1], x[1] + delta[1]); |
| EXPECT_EQ(x_plus_delta[2], x[2]); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| struct CopyableManifold : ceres::Manifold { |
| CopyableManifold() = default; |
| CopyableManifold(const CopyableManifold&) = default; |
| // Do not care about copy-assignment |
| CopyableManifold& operator=(const CopyableManifold&) = delete; |
| // Not moveable |
| CopyableManifold(CopyableManifold&&) = delete; |
| CopyableManifold& operator=(CopyableManifold&&) = delete; |
| |
| int AmbientSize() const override { return 3; } |
| int TangentSize() const override { return 2; } |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override { |
| return true; |
| } |
| |
| bool PlusJacobian(const double* x, double* jacobian) const override { |
| return true; |
| } |
| |
| bool RightMultiplyByPlusJacobian(const double* x, |
| const int num_rows, |
| const double* ambient_matrix, |
| double* tangent_matrix) const override { |
| return true; |
| } |
| |
| bool Minus(const double* y, |
| const double* x, |
| double* y_minus_x) const override { |
| return true; |
| } |
| |
| bool MinusJacobian(const double* x, double* jacobian) const override { |
| return true; |
| } |
| }; |
| |
| struct MoveableManifold : ceres::Manifold { |
| MoveableManifold() = default; |
| MoveableManifold(MoveableManifold&&) = default; |
| // Do not care about move-assignment |
| MoveableManifold& operator=(MoveableManifold&&) = delete; |
| // Not copyable |
| MoveableManifold(const MoveableManifold&) = delete; |
| MoveableManifold& operator=(const MoveableManifold&) = delete; |
| |
| int AmbientSize() const override { return 3; } |
| int TangentSize() const override { return 2; } |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override { |
| return true; |
| } |
| |
| bool PlusJacobian(const double* x, double* jacobian) const override { |
| return true; |
| } |
| |
| bool RightMultiplyByPlusJacobian(const double* x, |
| const int num_rows, |
| const double* ambient_matrix, |
| double* tangent_matrix) const override { |
| return true; |
| } |
| |
| bool Minus(const double* y, |
| const double* x, |
| double* y_minus_x) const override { |
| return true; |
| } |
| |
| bool MinusJacobian(const double* x, double* jacobian) const override { |
| return true; |
| } |
| }; |
| |
| TEST(ProductManifold, CopyableOnly) { |
| ProductManifold<CopyableManifold, EuclideanManifold<3>> manifold1{ |
| CopyableManifold{}, EuclideanManifold<3>{}}; |
| |
| CopyableManifold inner2; |
| ProductManifold<CopyableManifold, EuclideanManifold<3>> manifold2{ |
| inner2, EuclideanManifold<3>{}}; |
| |
| EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); |
| EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); |
| } |
| |
| TEST(ProductManifold, MoveableOnly) { |
| ProductManifold<MoveableManifold, EuclideanManifold<3>> manifold1{ |
| MoveableManifold{}, EuclideanManifold<3>{}}; |
| |
| MoveableManifold inner2; |
| ProductManifold<MoveableManifold, EuclideanManifold<3>> manifold2{ |
| std::move(inner2), EuclideanManifold<3>{}}; |
| |
| EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); |
| EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); |
| } |
| |
| TEST(ProductManifold, CopyableOrMoveable) { |
| const CopyableManifold inner12{}; |
| ProductManifold<MoveableManifold, CopyableManifold> manifold1{ |
| MoveableManifold{}, inner12}; |
| |
| MoveableManifold inner21; |
| CopyableManifold inner22; |
| ProductManifold<MoveableManifold, CopyableManifold> manifold2{ |
| std::move(inner21), inner22}; |
| |
| EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); |
| EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); |
| } |
| |
| struct NonDefaultConstructibleManifold : ceres::Manifold { |
| NonDefaultConstructibleManifold(int, int) {} |
| int AmbientSize() const override { return 4; } |
| int TangentSize() const override { return 3; } |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override { |
| return true; |
| } |
| |
| bool PlusJacobian(const double* x, double* jacobian) const override { |
| return true; |
| } |
| |
| bool RightMultiplyByPlusJacobian(const double* x, |
| const int num_rows, |
| const double* ambient_matrix, |
| double* tangent_matrix) const override { |
| return true; |
| } |
| |
| bool Minus(const double* y, |
| const double* x, |
| double* y_minus_x) const override { |
| return true; |
| } |
| |
| bool MinusJacobian(const double* x, double* jacobian) const override { |
| return true; |
| } |
| }; |
| |
| TEST(ProductManifold, NonDefaultConstructible) { |
| ProductManifold<NonDefaultConstructibleManifold, QuaternionManifold> |
| manifold1{NonDefaultConstructibleManifold{1, 2}, QuaternionManifold{}}; |
| ProductManifold<QuaternionManifold, NonDefaultConstructibleManifold> |
| manifold2{QuaternionManifold{}, NonDefaultConstructibleManifold{1, 2}}; |
| |
| EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); |
| EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); |
| } |
| |
| TEST(ProductManifold, DefaultConstructible) { |
| ProductManifold<EuclideanManifold<3>, SphereManifold<4>> manifold1; |
| ProductManifold<SphereManifold<4>, EuclideanManifold<3>> manifold2; |
| |
| EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); |
| EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); |
| } |
| |
| TEST(ProductManifold, Pointers) { |
| auto p = std::make_unique<QuaternionManifold>(); |
| auto q = std::make_shared<EuclideanManifold<3>>(); |
| |
| ProductManifold<std::unique_ptr<Manifold>, |
| EuclideanManifold<3>, |
| std::shared_ptr<EuclideanManifold<3>>> |
| manifold1{ |
| std::make_unique<QuaternionManifold>(), EuclideanManifold<3>{}, q}; |
| ProductManifold<QuaternionManifold*, |
| EuclideanManifold<3>, |
| std::shared_ptr<EuclideanManifold<3>>> |
| manifold2{p.get(), EuclideanManifold<3>{}, q}; |
| |
| EXPECT_EQ(manifold1.AmbientSize(), manifold2.AmbientSize()); |
| EXPECT_EQ(manifold1.TangentSize(), manifold2.TangentSize()); |
| } |
| |
| TEST(QuaternionManifold, PlusPiBy2) { |
| QuaternionManifold manifold; |
| Vector x = Vector::Zero(4); |
| x[0] = 1.0; |
| |
| for (int i = 0; i < 3; ++i) { |
| Vector delta = Vector::Zero(3); |
| delta[i] = M_PI / 2; |
| Vector x_plus_delta = Vector::Zero(4); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); |
| |
| // Expect that the element corresponding to pi/2 is +/- 1. All other |
| // elements should be zero. |
| for (int j = 0; j < 4; ++j) { |
| if (i == (j - 1)) { |
| EXPECT_LT(std::abs(x_plus_delta[j]) - 1, |
| std::numeric_limits<double>::epsilon()) |
| << "\ndelta = " << delta.transpose() |
| << "\nx_plus_delta = " << x_plus_delta.transpose() |
| << "\n expected the " << j |
| << "th element of x_plus_delta to be +/- 1."; |
| } else { |
| EXPECT_LT(std::abs(x_plus_delta[j]), |
| std::numeric_limits<double>::epsilon()) |
| << "\ndelta = " << delta.transpose() |
| << "\nx_plus_delta = " << x_plus_delta.transpose() |
| << "\n expected the " << j << "th element of x_plus_delta to be 0."; |
| } |
| } |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD( |
| manifold, x, delta, x_plus_delta, kTolerance); |
| } |
| } |
| |
| // Compute the expected value of QuaternionManifold::Plus via functions in |
| // rotation.h and compares it to the one computed by QuaternionManifold::Plus. |
| MATCHER_P2(QuaternionManifoldPlusIsCorrectAt, x, delta, "") { |
| // This multiplication by 2 is needed because AngleAxisToQuaternion uses |
| // |delta|/2 as the angle of rotation where as in the implementation of |
| // QuaternionManifold for historical reasons we use |delta|. |
| const Vector two_delta = delta * 2; |
| Vector delta_q(4); |
| AngleAxisToQuaternion(two_delta.data(), delta_q.data()); |
| |
| Vector expected(4); |
| QuaternionProduct(delta_q.data(), x.data(), expected.data()); |
| Vector actual(4); |
| EXPECT_TRUE(arg.Plus(x.data(), delta.data(), actual.data())); |
| |
| const double n = (actual - expected).norm(); |
| const double d = expected.norm(); |
| const double diffnorm = n / d; |
| if (diffnorm > kTolerance) { |
| *result_listener << "\nx: " << x.transpose() |
| << "\ndelta: " << delta.transpose() |
| << "\nexpected: " << expected.transpose() |
| << "\nactual: " << actual.transpose() |
| << "\ndiff: " << (expected - actual).transpose() |
| << "\ndiffnorm : " << diffnorm; |
| return false; |
| } |
| return true; |
| } |
| |
| static Vector RandomQuaternion() { |
| Vector x = Vector::Random(4); |
| x.normalize(); |
| return x; |
| } |
| |
| TEST(QuaternionManifold, GenericDelta) { |
| QuaternionManifold manifold; |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = RandomQuaternion(); |
| const Vector y = RandomQuaternion(); |
| Vector delta = Vector::Random(3); |
| EXPECT_THAT(manifold, QuaternionManifoldPlusIsCorrectAt(x, delta)); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(QuaternionManifold, SmallDelta) { |
| QuaternionManifold manifold; |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = RandomQuaternion(); |
| const Vector y = RandomQuaternion(); |
| Vector delta = Vector::Random(3); |
| delta.normalize(); |
| delta *= 1e-6; |
| EXPECT_THAT(manifold, QuaternionManifoldPlusIsCorrectAt(x, delta)); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(QuaternionManifold, DeltaJustBelowPi) { |
| QuaternionManifold manifold; |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = RandomQuaternion(); |
| const Vector y = RandomQuaternion(); |
| Vector delta = Vector::Random(3); |
| delta.normalize(); |
| delta *= (M_PI - 1e-6); |
| EXPECT_THAT(manifold, QuaternionManifoldPlusIsCorrectAt(x, delta)); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| // Compute the expected value of EigenQuaternionManifold::Plus using Eigen and |
| // compares it to the one computed by QuaternionManifold::Plus. |
| MATCHER_P2(EigenQuaternionManifoldPlusIsCorrectAt, x, delta, "") { |
| // This multiplication by 2 is needed because AngleAxisToQuaternion uses |
| // |delta|/2 as the angle of rotation where as in the implementation of |
| // Quaternion for historical reasons we use |delta|. |
| const Vector two_delta = delta * 2; |
| Vector delta_q(4); |
| AngleAxisToQuaternion(two_delta.data(), delta_q.data()); |
| Eigen::Quaterniond delta_eigen_q( |
| delta_q[0], delta_q[1], delta_q[2], delta_q[3]); |
| |
| Eigen::Map<const Eigen::Quaterniond> x_eigen_q(x.data()); |
| |
| Eigen::Quaterniond expected = delta_eigen_q * x_eigen_q; |
| double actual[4]; |
| EXPECT_TRUE(arg.Plus(x.data(), delta.data(), actual)); |
| Eigen::Map<Eigen::Quaterniond> actual_eigen_q(actual); |
| |
| const double n = (actual_eigen_q.coeffs() - expected.coeffs()).norm(); |
| const double d = expected.norm(); |
| const double diffnorm = n / d; |
| if (diffnorm > kTolerance) { |
| *result_listener |
| << "\nx: " << x.transpose() << "\ndelta: " << delta.transpose() |
| << "\nexpected: " << expected.coeffs().transpose() |
| << "\nactual: " << actual_eigen_q.coeffs().transpose() << "\ndiff: " |
| << (expected.coeffs() - actual_eigen_q.coeffs()).transpose() |
| << "\ndiffnorm : " << diffnorm; |
| return false; |
| } |
| return true; |
| } |
| |
| TEST(EigenQuaternionManifold, GenericDelta) { |
| EigenQuaternionManifold manifold; |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = RandomQuaternion(); |
| const Vector y = RandomQuaternion(); |
| Vector delta = Vector::Random(3); |
| EXPECT_THAT(manifold, EigenQuaternionManifoldPlusIsCorrectAt(x, delta)); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(EigenQuaternionManifold, SmallDelta) { |
| EigenQuaternionManifold manifold; |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = RandomQuaternion(); |
| const Vector y = RandomQuaternion(); |
| Vector delta = Vector::Random(3); |
| delta.normalize(); |
| delta *= 1e-6; |
| EXPECT_THAT(manifold, EigenQuaternionManifoldPlusIsCorrectAt(x, delta)); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(EigenQuaternionManifold, DeltaJustBelowPi) { |
| EigenQuaternionManifold manifold; |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = RandomQuaternion(); |
| const Vector y = RandomQuaternion(); |
| Vector delta = Vector::Random(3); |
| delta.normalize(); |
| delta *= (M_PI - 1e-6); |
| EXPECT_THAT(manifold, EigenQuaternionManifoldPlusIsCorrectAt(x, delta)); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| using Eigen::Vector2d; |
| using Eigen::Vector3d; |
| using Vector6d = Eigen::Matrix<double, 6, 1>; |
| using Eigen::Vector4d; |
| using Vector8d = Eigen::Matrix<double, 8, 1>; |
| |
| TEST(SphereManifold, ZeroTest) { |
| Vector4d x{0.0, 0.0, 0.0, 1.0}; |
| Vector3d delta = Vector3d::Zero(); |
| Vector4d y = Vector4d::Zero(); |
| |
| SphereManifold<4> manifold; |
| manifold.Plus(x.data(), delta.data(), y.data()); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(SphereManifold, NearZeroTest1) { |
| Vector4d x{1e-5, 1e-5, 1e-5, 1.0}; |
| x.normalize(); |
| Vector3d delta{0.0, 1.0, 0.0}; |
| Vector4d y = Vector4d::Zero(); |
| |
| SphereManifold<4> manifold; |
| manifold.Plus(x.data(), delta.data(), y.data()); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(SphereManifold, NearZeroTest2) { |
| Vector4d x{0.01, 0.0, 0.0, 0.0}; |
| Vector3d delta{0.0, 1.0, 0.0}; |
| Vector4d y = Vector4d::Zero(); |
| SphereManifold<4> manifold; |
| manifold.Plus(x.data(), delta.data(), y.data()); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(SphereManifold, Plus2DTest) { |
| Eigen::Vector2d x{0.0, 1.0}; |
| SphereManifold<2> manifold; |
| |
| { |
| double delta[1]{M_PI_4}; |
| Eigen::Vector2d y = Eigen::Vector2d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta, y.data())); |
| const Eigen::Vector2d gtY(std::sqrt(2.0) / 2.0, std::sqrt(2.0) / 2.0); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| double delta[1]{M_PI_2}; |
| Eigen::Vector2d y = Eigen::Vector2d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta, y.data())); |
| const Eigen::Vector2d gtY = Eigen::Vector2d::UnitX(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| double delta[1]{M_PI}; |
| Eigen::Vector2d y = Eigen::Vector2d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta, y.data())); |
| const Eigen::Vector2d gtY = -Eigen::Vector2d::UnitY(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| double delta[1]{2.0 * M_PI}; |
| Eigen::Vector2d y = Eigen::Vector2d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta, y.data())); |
| const Eigen::Vector2d gtY = Eigen::Vector2d::UnitY(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| } |
| |
| TEST(SphereManifold, Plus3DTest) { |
| Eigen::Vector3d x{0.0, 0.0, 1.0}; |
| SphereManifold<3> manifold; |
| |
| { |
| Eigen::Vector2d delta{M_PI_2, 0.0}; |
| Eigen::Vector3d y = Eigen::Vector3d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| const Eigen::Vector3d gtY = Eigen::Vector3d::UnitX(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Eigen::Vector2d delta{M_PI, 0.0}; |
| Eigen::Vector3d y = Eigen::Vector3d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| const Eigen::Vector3d gtY = -Eigen::Vector3d::UnitZ(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Eigen::Vector2d delta{2.0 * M_PI, 0.0}; |
| Eigen::Vector3d y = Eigen::Vector3d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| const Eigen::Vector3d gtY = Eigen::Vector3d::UnitZ(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Eigen::Vector2d delta{0.0, M_PI_2}; |
| Eigen::Vector3d y = Eigen::Vector3d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| const Eigen::Vector3d gtY = Eigen::Vector3d::UnitY(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Eigen::Vector2d delta{0.0, M_PI}; |
| Eigen::Vector3d y = Eigen::Vector3d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| const Eigen::Vector3d gtY = -Eigen::Vector3d::UnitZ(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Eigen::Vector2d delta{0.0, 2.0 * M_PI}; |
| Eigen::Vector3d y = Eigen::Vector3d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| const Eigen::Vector3d gtY = Eigen::Vector3d::UnitZ(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Eigen::Vector2d delta = Eigen::Vector2d(1, 1).normalized() * M_PI_2; |
| Eigen::Vector3d y = Eigen::Vector3d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| const Eigen::Vector3d gtY(std::sqrt(2.0) / 2.0, std::sqrt(2.0) / 2.0, 0.0); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Eigen::Vector2d delta = Eigen::Vector2d(1, 1).normalized() * M_PI; |
| Eigen::Vector3d y = Eigen::Vector3d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| const Eigen::Vector3d gtY = -Eigen::Vector3d::UnitZ(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| } |
| |
| TEST(SphereManifold, Minus2DTest) { |
| Eigen::Vector2d x{1.0, 0.0}; |
| SphereManifold<2> manifold; |
| |
| { |
| double delta[1]; |
| const Eigen::Vector2d y(std::sqrt(2.0) / 2.0, std::sqrt(2.0) / 2.0); |
| const double gtDelta{M_PI_4}; |
| EXPECT_TRUE(manifold.Minus(y.data(), x.data(), delta)); |
| EXPECT_LT(std::abs(delta[0] - gtDelta), kTolerance); |
| } |
| |
| { |
| double delta[1]; |
| const Eigen::Vector2d y(-1, 0); |
| const double gtDelta{M_PI}; |
| EXPECT_TRUE(manifold.Minus(y.data(), x.data(), delta)); |
| EXPECT_LT(std::abs(delta[0] - gtDelta), kTolerance); |
| } |
| } |
| |
| TEST(SphereManifold, Minus3DTest) { |
| Eigen::Vector3d x{1.0, 0.0, 0.0}; |
| SphereManifold<3> manifold; |
| |
| { |
| Eigen::Vector2d delta; |
| const Eigen::Vector3d y(std::sqrt(2.0) / 2.0, 0.0, std::sqrt(2.0) / 2.0); |
| const Eigen::Vector2d gtDelta(M_PI_4, 0.0); |
| EXPECT_TRUE(manifold.Minus(y.data(), x.data(), delta.data())); |
| EXPECT_LT((delta - gtDelta).norm(), kTolerance); |
| } |
| |
| { |
| Eigen::Vector2d delta; |
| const Eigen::Vector3d y(-1, 0, 0); |
| const Eigen::Vector2d gtDelta(0.0, M_PI); |
| EXPECT_TRUE(manifold.Minus(y.data(), x.data(), delta.data())); |
| EXPECT_LT((delta - gtDelta).norm(), kTolerance); |
| } |
| } |
| |
| TEST(SphereManifold, DeathTests) { |
| EXPECT_DEATH_IF_SUPPORTED(SphereManifold<Eigen::Dynamic> x(1), "size"); |
| } |
| |
| TEST(SphereManifold, NormalFunctionTest) { |
| SphereManifold<4> manifold; |
| EXPECT_EQ(manifold.AmbientSize(), 4); |
| EXPECT_EQ(manifold.TangentSize(), 3); |
| |
| Vector zero_tangent = Vector::Zero(manifold.TangentSize()); |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(manifold.AmbientSize()); |
| Vector y = Vector::Random(manifold.AmbientSize()); |
| Vector delta = Vector::Random(manifold.TangentSize()); |
| |
| if (x.norm() == 0.0 || y.norm() == 0.0) { |
| continue; |
| } |
| |
| // X and y need to have the same length. |
| y *= x.norm() / y.norm(); |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(SphereManifold, NormalFunctionTestDynamic) { |
| SphereManifold<ceres::DYNAMIC> manifold(5); |
| EXPECT_EQ(manifold.AmbientSize(), 5); |
| EXPECT_EQ(manifold.TangentSize(), 4); |
| |
| Vector zero_tangent = Vector::Zero(manifold.TangentSize()); |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const Vector x = Vector::Random(manifold.AmbientSize()); |
| Vector y = Vector::Random(manifold.AmbientSize()); |
| Vector delta = Vector::Random(manifold.TangentSize()); |
| |
| if (x.norm() == 0.0 || y.norm() == 0.0) { |
| continue; |
| } |
| |
| // X and y need to have the same length. |
| y *= x.norm() / y.norm(); |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(LineManifold, ZeroTest3D) { |
| const Vector6d x = Vector6d::Unit(5); |
| const Vector4d delta = Vector4d::Zero(); |
| Vector6d y = Vector6d::Zero(); |
| |
| LineManifold<3> manifold; |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(LineManifold, ZeroTest4D) { |
| const Vector8d x = Vector8d::Unit(7); |
| const Vector6d delta = Vector6d::Zero(); |
| Vector8d y = Vector8d::Zero(); |
| |
| LineManifold<4> manifold; |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(LineManifold, ZeroOriginPointTest3D) { |
| const Vector6d x = Vector6d::Unit(5); |
| Vector4d delta; |
| delta << 0.0, 0.0, 1.0, 2.0; |
| Vector6d y = Vector6d::Zero(); |
| |
| LineManifold<3> manifold; |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(LineManifold, ZeroOriginPointTest4D) { |
| const Vector8d x = Vector8d::Unit(7); |
| Vector6d delta; |
| delta << 0.0, 0.0, 0.0, 0.5, 1.0, 1.5; |
| Vector8d y = Vector8d::Zero(); |
| |
| LineManifold<4> manifold; |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(LineManifold, ZeroDirTest3D) { |
| Vector6d x = Vector6d::Unit(5); |
| Vector4d delta; |
| delta << 3.0, 2.0, 0.0, 0.0; |
| Vector6d y = Vector6d::Zero(); |
| |
| LineManifold<3> manifold; |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(LineManifold, ZeroDirTest4D) { |
| Vector8d x = Vector8d::Unit(7); |
| Vector6d delta; |
| delta << 3.0, 2.0, 1.0, 0.0, 0.0, 0.0; |
| Vector8d y = Vector8d::Zero(); |
| |
| LineManifold<4> manifold; |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| |
| TEST(LineManifold, Plus) { |
| Vector6d x = Vector6d::Unit(5); |
| LineManifold<3> manifold; |
| |
| { |
| Vector4d delta{0.0, 2.0, M_PI_2, 0.0}; |
| Vector6d y = Vector6d::Random(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| Vector6d gtY; |
| gtY << 2.0 * Vector3d::UnitY(), Vector3d::UnitX(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Vector4d delta{3.0, 0.0, 0.0, M_PI_2}; |
| Vector6d y = Vector6d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| Vector6d gtY; |
| gtY << 3.0 * Vector3d::UnitX(), Vector3d::UnitY(); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| |
| { |
| Vector4d delta; |
| delta << Vector2d(1.0, 2.0), Vector2d(1, 1).normalized() * M_PI_2; |
| Vector6d y = Vector6d::Zero(); |
| EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), y.data())); |
| Vector6d gtY; |
| gtY << Vector3d(1.0, 2.0, 0.0), |
| Vector3d(std::sqrt(2.0) / 2.0, std::sqrt(2.0) / 2.0, 0.0); |
| EXPECT_LT((y - gtY).norm(), kTolerance); |
| } |
| } |
| |
| TEST(LineManifold, NormalFunctionTest) { |
| LineManifold<3> manifold; |
| EXPECT_EQ(manifold.AmbientSize(), 6); |
| EXPECT_EQ(manifold.TangentSize(), 4); |
| |
| Vector zero_tangent = Vector::Zero(manifold.TangentSize()); |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| Vector x = Vector::Random(manifold.AmbientSize()); |
| Vector y = Vector::Random(manifold.AmbientSize()); |
| Vector delta = Vector::Random(manifold.TangentSize()); |
| |
| if (x.tail<3>().norm() == 0.0) { |
| continue; |
| } |
| |
| x.tail<3>().normalize(); |
| manifold.Plus(x.data(), delta.data(), y.data()); |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| TEST(LineManifold, NormalFunctionTestDynamic) { |
| LineManifold<ceres::DYNAMIC> manifold(3); |
| EXPECT_EQ(manifold.AmbientSize(), 6); |
| EXPECT_EQ(manifold.TangentSize(), 4); |
| |
| Vector zero_tangent = Vector::Zero(manifold.TangentSize()); |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| Vector x = Vector::Random(manifold.AmbientSize()); |
| Vector y = Vector::Random(manifold.AmbientSize()); |
| Vector delta = Vector::Random(manifold.TangentSize()); |
| |
| if (x.tail<3>().norm() == 0.0) { |
| continue; |
| } |
| |
| x.tail<3>().normalize(); |
| manifold.Plus(x.data(), delta.data(), y.data()); |
| |
| EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| } |
| } |
| |
| } // namespace ceres::internal |