blob: c29fbcc7fedf0bac97c965b6c07833591a6d6b3d [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: vitus@google.com (Mike Vitus)
// jodebo_beck@gmx.de (Johannes Beck)
#include "ceres/internal/householder_vector.h"
namespace ceres {
template <int AmbientSpaceDimension>
SphereManifold<AmbientSpaceDimension>::SphereManifold()
: size_{AmbientSpaceDimension} {
static_assert(
AmbientSpaceDimension != Eigen::Dynamic,
"The size is set to dynamic. Please call the constructor with a size.");
}
template <int AmbientSpaceDimension>
SphereManifold<AmbientSpaceDimension>::SphereManifold(int size) : size_{size} {
if (AmbientSpaceDimension != Eigen::Dynamic) {
CHECK_EQ(AmbientSpaceDimension, size)
<< "Specified size by template parameter differs from the supplied "
"one.";
} else {
CHECK_GT(size_, 1)
<< "The size of the manifold needs to be greater than 1.";
}
}
template <int AmbientSpaceDimension>
bool SphereManifold<AmbientSpaceDimension>::Plus(
const double* x_ptr,
const double* delta_ptr,
double* x_plus_delta_ptr) const {
Eigen::Map<const AmbientVector> x(x_ptr, size_);
Eigen::Map<const TangentVector> delta(delta_ptr, size_ - 1);
Eigen::Map<AmbientVector> x_plus_delta(x_plus_delta_ptr, size_);
const double norm_delta = delta.norm();
if (norm_delta == 0.0) {
x_plus_delta = x;
return true;
}
// Map the delta from the minimum representation to the over parameterized
// homogeneous vector. See B.2 p.25 equation (106) - (107) for more details.
const double norm_delta_div_2 = 0.5 * norm_delta;
const double sin_delta_by_delta =
std::sin(norm_delta_div_2) / norm_delta_div_2;
AmbientVector y(size_);
y.head(size_ - 1) = 0.5 * sin_delta_by_delta * delta;
y(size_ - 1) = std::cos(norm_delta_div_2);
AmbientVector v(size_);
double beta;
// NOTE: The explicit template arguments are needed here because
// ComputeHouseholderVector is templated and some versions of MSVC
// have trouble deducing the type of v automatically.
internal::ComputeHouseholderVector<Eigen::Map<const AmbientVector>,
double,
AmbientSpaceDimension>(x, &v, &beta);
// Apply the delta update to remain on the sphere.
x_plus_delta = x.norm() * internal::ApplyHouseholderVector(y, v, beta);
return true;
}
template <int AmbientSpaceDimension>
bool SphereManifold<AmbientSpaceDimension>::PlusJacobian(
const double* x_ptr, double* jacobian_ptr) const {
Eigen::Map<const AmbientVector> x(x_ptr, size_);
Eigen::Map<MatrixPlusJacobian> jacobian(jacobian_ptr, size_, size_ - 1);
AmbientVector v(size_);
double beta;
// NOTE: The explicit template arguments are needed here because
// ComputeHouseholderVector is templated and some versions of MSVC
// have trouble deducing the type of v automatically.
internal::ComputeHouseholderVector<Eigen::Map<const AmbientVector>,
double,
AmbientSpaceDimension>(x, &v, &beta);
// The Jacobian is equal to J = 0.5 * H.leftCols(size_ - 1) where H is the
// Householder matrix (H = I - beta * v * v').
for (int i = 0; i < size_ - 1; ++i) {
jacobian.col(i) = -0.5 * beta * v(i) * v;
jacobian.col(i)(i) += 0.5;
}
jacobian *= x.norm();
return true;
}
template <int AmbientSpaceDimension>
bool SphereManifold<AmbientSpaceDimension>::Minus(const double* y_ptr,
const double* x_ptr,
double* y_minus_x_ptr) const {
AmbientVector y = Eigen::Map<const AmbientVector>(y_ptr, size_);
Eigen::Map<const AmbientVector> x(x_ptr, size_);
Eigen::Map<TangentVector> y_minus_x(y_minus_x_ptr, size_ - 1);
// Apply hoseholder transformation.
AmbientVector v(size_);
double beta;
// NOTE: The explicit template arguments are needed here because
// ComputeHouseholderVector is templated and some versions of MSVC
// have trouble deducing the type of v automatically.
internal::ComputeHouseholderVector<Eigen::Map<const AmbientVector>,
double,
AmbientSpaceDimension>(x, &v, &beta);
const AmbientVector hy =
internal::ApplyHouseholderVector(y, v, beta) / x.norm();
// Calculate y - x. See B.2 p.25 equation (108).
double y_last = hy[size_ - 1];
double hy_norm = hy.head(size_ - 1).norm();
if (hy_norm == 0.0) {
y_minus_x.setZero();
} else {
y_minus_x =
2.0 * std::atan2(hy_norm, y_last) / hy_norm * hy.head(size_ - 1);
}
return true;
}
template <int AmbientSpaceDimension>
bool SphereManifold<AmbientSpaceDimension>::MinusJacobian(
const double* x_ptr, double* jacobian_ptr) const {
Eigen::Map<const AmbientVector> x(x_ptr, size_);
Eigen::Map<MatrixMinusJacobian> jacobian(jacobian_ptr, size_ - 1, size_);
AmbientVector v(size_);
double beta;
// NOTE: The explicit template arguments are needed here because
// ComputeHouseholderVector is templated and some versions of MSVC
// have trouble deducing the type of v automatically.
internal::ComputeHouseholderVector<Eigen::Map<const AmbientVector>,
double,
AmbientSpaceDimension>(x, &v, &beta);
// The Jacobian is equal to J = 2.0 * H.leftCols(size_ - 1) where H is the
// Householder matrix (H = I - beta * v * v').
for (int i = 0; i < size_ - 1; ++i) {
jacobian.row(i) = -2.0 * beta * v(i) * v;
jacobian.row(i)(i) += 2.0;
}
jacobian /= x.norm();
return true;
}
} // namespace ceres