|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2021 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_PARAMETER_BLOCK_H_ | 
|  | #define CERES_INTERNAL_PARAMETER_BLOCK_H_ | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstdint> | 
|  | #include <cstdlib> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <unordered_set> | 
|  |  | 
|  | #include "ceres/array_utils.h" | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/manifold.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | class ProblemImpl; | 
|  | class ResidualBlock; | 
|  |  | 
|  | // The parameter block encodes the location of the user's original value, and | 
|  | // also the "current state" of the parameter. The evaluator uses whatever is in | 
|  | // the current state of the parameter when evaluating. This is inlined since the | 
|  | // methods are performance sensitive. | 
|  | // | 
|  | // The class is not thread-safe, unless only const methods are called. The | 
|  | // parameter block may also hold a pointer to a manifold; the parameter block | 
|  | // does not take ownership of this pointer, so the user is responsible for the | 
|  | // proper disposal of the manifold. | 
|  | class CERES_NO_EXPORT ParameterBlock { | 
|  | public: | 
|  | using ResidualBlockSet = std::unordered_set<ResidualBlock*>; | 
|  |  | 
|  | // Create a parameter block with the user state, size, and index specified. | 
|  | // The size is the size of the parameter block and the index is the position | 
|  | // of the parameter block inside a Program (if any). | 
|  | ParameterBlock(double* user_state, int size, int index) | 
|  | : user_state_(user_state), | 
|  | size_(size), | 
|  | state_(user_state), | 
|  | index_(index) {} | 
|  |  | 
|  | ParameterBlock(double* user_state, int size, int index, Manifold* manifold) | 
|  | : user_state_(user_state), | 
|  | size_(size), | 
|  | state_(user_state), | 
|  | index_(index) { | 
|  | if (manifold != nullptr) { | 
|  | SetManifold(manifold); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The size of the parameter block. | 
|  | int Size() const { return size_; } | 
|  |  | 
|  | // Manipulate the parameter state. | 
|  | bool SetState(const double* x) { | 
|  | CHECK(x != nullptr) << "Tried to set the state of constant parameter " | 
|  | << "with user location " << user_state_; | 
|  | CHECK(!IsConstant()) << "Tried to set the state of constant parameter " | 
|  | << "with user location " << user_state_; | 
|  |  | 
|  | state_ = x; | 
|  | return UpdatePlusJacobian(); | 
|  | } | 
|  |  | 
|  | // Copy the current parameter state out to x. This is "GetState()" rather than | 
|  | // simply "state()" since it is actively copying the data into the passed | 
|  | // pointer. | 
|  | void GetState(double* x) const { | 
|  | if (x != state_) { | 
|  | std::copy(state_, state_ + size_, x); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Direct pointers to the current state. | 
|  | const double* state() const { return state_; } | 
|  | const double* user_state() const { return user_state_; } | 
|  | double* mutable_user_state() { return user_state_; } | 
|  | const Manifold* manifold() const { return manifold_; } | 
|  | Manifold* mutable_manifold() { return manifold_; } | 
|  |  | 
|  | // Set this parameter block to vary or not. | 
|  | void SetConstant() { is_set_constant_ = true; } | 
|  | void SetVarying() { is_set_constant_ = false; } | 
|  | bool IsConstant() const { return (is_set_constant_ || TangentSize() == 0); } | 
|  |  | 
|  | double UpperBound(int index) const { | 
|  | return (upper_bounds_ ? upper_bounds_[index] | 
|  | : std::numeric_limits<double>::max()); | 
|  | } | 
|  |  | 
|  | double LowerBound(int index) const { | 
|  | return (lower_bounds_ ? lower_bounds_[index] | 
|  | : -std::numeric_limits<double>::max()); | 
|  | } | 
|  |  | 
|  | bool IsUpperBounded() const { return (upper_bounds_ == nullptr); } | 
|  | bool IsLowerBounded() const { return (lower_bounds_ == nullptr); } | 
|  |  | 
|  | // This parameter block's index in an array. | 
|  | int index() const { return index_; } | 
|  | void set_index(int index) { index_ = index; } | 
|  |  | 
|  | // This parameter offset inside a larger state vector. | 
|  | int state_offset() const { return state_offset_; } | 
|  | void set_state_offset(int state_offset) { state_offset_ = state_offset; } | 
|  |  | 
|  | // This parameter offset inside a larger delta vector. | 
|  | int delta_offset() const { return delta_offset_; } | 
|  | void set_delta_offset(int delta_offset) { delta_offset_ = delta_offset; } | 
|  |  | 
|  | // Methods relating to the parameter block's manifold. | 
|  |  | 
|  | // The local to global jacobian. Returns nullptr if there is no manifold for | 
|  | // this parameter block. The returned matrix is row-major and has Size() rows | 
|  | // and TangentSize() columns. | 
|  | const double* PlusJacobian() const { return plus_jacobian_.get(); } | 
|  |  | 
|  | int TangentSize() const { | 
|  | return (manifold_ == nullptr) ? size_ : manifold_->TangentSize(); | 
|  | } | 
|  |  | 
|  | // Set the manifold. The parameter block does not take ownership of | 
|  | // the manifold. | 
|  | void SetManifold(Manifold* new_manifold) { | 
|  | // Nothing to do if the new manifold is the same as the old | 
|  | // manifold. | 
|  | if (new_manifold == manifold_) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (new_manifold == nullptr) { | 
|  | manifold_ = nullptr; | 
|  | plus_jacobian_ = nullptr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | CHECK_EQ(new_manifold->AmbientSize(), size_) | 
|  | << "The parameter block has size = " << size_ | 
|  | << " while the manifold has ambient size = " | 
|  | << new_manifold->AmbientSize(); | 
|  |  | 
|  | CHECK_GE(new_manifold->TangentSize(), 0) | 
|  | << "Invalid Manifold. Manifolds must have a " | 
|  | << "non-negative dimensional tangent space."; | 
|  |  | 
|  | manifold_ = new_manifold; | 
|  | plus_jacobian_ = std::make_unique<double[]>(manifold_->AmbientSize() * | 
|  | manifold_->TangentSize()); | 
|  | CHECK(UpdatePlusJacobian()) | 
|  | << "Manifold::PlusJacobian computation failed for x: " | 
|  | << ConstVectorRef(state_, Size()).transpose(); | 
|  | } | 
|  |  | 
|  | void SetUpperBound(int index, double upper_bound) { | 
|  | CHECK_LT(index, size_); | 
|  |  | 
|  | if (upper_bound >= std::numeric_limits<double>::max() && !upper_bounds_) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!upper_bounds_) { | 
|  | upper_bounds_ = std::make_unique<double[]>(size_); | 
|  | std::fill(upper_bounds_.get(), | 
|  | upper_bounds_.get() + size_, | 
|  | std::numeric_limits<double>::max()); | 
|  | } | 
|  |  | 
|  | upper_bounds_[index] = upper_bound; | 
|  | } | 
|  |  | 
|  | void SetLowerBound(int index, double lower_bound) { | 
|  | CHECK_LT(index, size_); | 
|  |  | 
|  | if (lower_bound <= -std::numeric_limits<double>::max() && !lower_bounds_) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!lower_bounds_) { | 
|  | lower_bounds_ = std::make_unique<double[]>(size_); | 
|  | std::fill(lower_bounds_.get(), | 
|  | lower_bounds_.get() + size_, | 
|  | -std::numeric_limits<double>::max()); | 
|  | } | 
|  |  | 
|  | lower_bounds_[index] = lower_bound; | 
|  | } | 
|  |  | 
|  | // Generalization of the addition operation. This is the same as | 
|  | // Manifold::Plus() followed by projection onto the | 
|  | // hyper cube implied by the bounds constraints. | 
|  | bool Plus(const double* x, const double* delta, double* x_plus_delta) { | 
|  | if (manifold_ != nullptr) { | 
|  | if (!manifold_->Plus(x, delta, x_plus_delta)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | VectorRef(x_plus_delta, size_) = | 
|  | ConstVectorRef(x, size_) + ConstVectorRef(delta, size_); | 
|  | } | 
|  |  | 
|  | // Project onto the box constraints. | 
|  | if (lower_bounds_.get() != nullptr) { | 
|  | for (int i = 0; i < size_; ++i) { | 
|  | x_plus_delta[i] = std::max(x_plus_delta[i], lower_bounds_[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (upper_bounds_.get() != nullptr) { | 
|  | for (int i = 0; i < size_; ++i) { | 
|  | x_plus_delta[i] = std::min(x_plus_delta[i], upper_bounds_[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string ToString() const { | 
|  | return StringPrintf( | 
|  | "{ this=%p, user_state=%p, state=%p, size=%d, " | 
|  | "constant=%d, index=%d, state_offset=%d, " | 
|  | "delta_offset=%d }", | 
|  | this, | 
|  | user_state_, | 
|  | state_, | 
|  | size_, | 
|  | is_set_constant_, | 
|  | index_, | 
|  | state_offset_, | 
|  | delta_offset_); | 
|  | } | 
|  |  | 
|  | void EnableResidualBlockDependencies() { | 
|  | CHECK(residual_blocks_.get() == nullptr) | 
|  | << "Ceres bug: There is already a residual block collection " | 
|  | << "for parameter block: " << ToString(); | 
|  | residual_blocks_ = std::make_unique<ResidualBlockSet>(); | 
|  | } | 
|  |  | 
|  | void AddResidualBlock(ResidualBlock* residual_block) { | 
|  | CHECK(residual_blocks_.get() != nullptr) | 
|  | << "Ceres bug: The residual block collection is null for parameter " | 
|  | << "block: " << ToString(); | 
|  | residual_blocks_->insert(residual_block); | 
|  | } | 
|  |  | 
|  | void RemoveResidualBlock(ResidualBlock* residual_block) { | 
|  | CHECK(residual_blocks_.get() != nullptr) | 
|  | << "Ceres bug: The residual block collection is null for parameter " | 
|  | << "block: " << ToString(); | 
|  | CHECK(residual_blocks_->find(residual_block) != residual_blocks_->end()) | 
|  | << "Ceres bug: Missing residual for parameter block: " << ToString(); | 
|  | residual_blocks_->erase(residual_block); | 
|  | } | 
|  |  | 
|  | // This is only intended for iterating; perhaps this should only expose | 
|  | // .begin() and .end(). | 
|  | ResidualBlockSet* mutable_residual_blocks() { return residual_blocks_.get(); } | 
|  |  | 
|  | double LowerBoundForParameter(int index) const { | 
|  | if (lower_bounds_.get() == nullptr) { | 
|  | return -std::numeric_limits<double>::max(); | 
|  | } else { | 
|  | return lower_bounds_[index]; | 
|  | } | 
|  | } | 
|  |  | 
|  | double UpperBoundForParameter(int index) const { | 
|  | if (upper_bounds_.get() == nullptr) { | 
|  | return std::numeric_limits<double>::max(); | 
|  | } else { | 
|  | return upper_bounds_[index]; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool UpdatePlusJacobian() { | 
|  | if (manifold_ == nullptr) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Update the Plus Jacobian. In some cases this is | 
|  | // wasted effort; if this is a bottleneck, we will find a solution | 
|  | // at that time. | 
|  | const int jacobian_size = Size() * TangentSize(); | 
|  | InvalidateArray(jacobian_size, plus_jacobian_.get()); | 
|  | if (!manifold_->PlusJacobian(state_, plus_jacobian_.get())) { | 
|  | LOG(WARNING) << "Manifold::PlusJacobian computation failed" | 
|  | "for x: " | 
|  | << ConstVectorRef(state_, Size()).transpose(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsArrayValid(jacobian_size, plus_jacobian_.get())) { | 
|  | LOG(WARNING) << "Manifold::PlusJacobian computation returned " | 
|  | << "an invalid matrix for x: " | 
|  | << ConstVectorRef(state_, Size()).transpose() | 
|  | << "\n Jacobian matrix : " | 
|  | << ConstMatrixRef( | 
|  | plus_jacobian_.get(), Size(), TangentSize()); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | double* user_state_ = nullptr; | 
|  | int size_ = -1; | 
|  | bool is_set_constant_ = false; | 
|  | Manifold* manifold_ = nullptr; | 
|  |  | 
|  | // The "state" of the parameter. These fields are only needed while the | 
|  | // solver is running. While at first glance using mutable is a bad idea, this | 
|  | // ends up simplifying the internals of Ceres enough to justify the potential | 
|  | // pitfalls of using "mutable." | 
|  | mutable const double* state_ = nullptr; | 
|  | mutable std::unique_ptr<double[]> plus_jacobian_; | 
|  |  | 
|  | // The index of the parameter. This is used by various other parts of Ceres to | 
|  | // permit switching from a ParameterBlock* to an index in another array. | 
|  | int index_ = -1; | 
|  |  | 
|  | // The offset of this parameter block inside a larger state vector. | 
|  | int state_offset_ = -1; | 
|  |  | 
|  | // The offset of this parameter block inside a larger delta vector. | 
|  | int delta_offset_ = -1; | 
|  |  | 
|  | // If non-null, contains the residual blocks this parameter block is in. | 
|  | std::unique_ptr<ResidualBlockSet> residual_blocks_; | 
|  |  | 
|  | // Upper and lower bounds for the parameter block.  SetUpperBound | 
|  | // and SetLowerBound lazily initialize the upper_bounds_ and | 
|  | // lower_bounds_ arrays. If they are never called, then memory for | 
|  | // these arrays is never allocated. Thus for problems where there | 
|  | // are no bounds, or only one sided bounds we do not pay the cost of | 
|  | // allocating memory for the inactive bounds constraints. | 
|  | // | 
|  | // Upon initialization these arrays are initialized to | 
|  | // std::numeric_limits<double>::max() and | 
|  | // -std::numeric_limits<double>::max() respectively which correspond | 
|  | // to the parameter block being unconstrained. | 
|  | std::unique_ptr<double[]> upper_bounds_; | 
|  | std::unique_ptr<double[]> lower_bounds_; | 
|  |  | 
|  | // Necessary so ProblemImpl can clean up the manifolds. | 
|  | friend class ProblemImpl; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  |  | 
|  | #endif  // CERES_INTERNAL_PARAMETER_BLOCK_H_ |