blob: fd828cef66e1f66a6d9d04d2083900b4f9b46776 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2013 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/cost_function_to_functor.h"
#include "ceres/autodiff_cost_function.h"
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
const double kTolerance = 1e-18;
void ExpectCostFunctionsAreEqual(const CostFunction& cost_function,
const CostFunction& actual_cost_function) {
EXPECT_EQ(cost_function.num_residuals(),
actual_cost_function.num_residuals());
const int num_residuals = cost_function.num_residuals();
const vector<int32>& parameter_block_sizes =
cost_function.parameter_block_sizes();
const vector<int32>& actual_parameter_block_sizes =
actual_cost_function.parameter_block_sizes();
EXPECT_EQ(parameter_block_sizes.size(),
actual_parameter_block_sizes.size());
int num_parameters = 0;
for (int i = 0; i < parameter_block_sizes.size(); ++i) {
EXPECT_EQ(parameter_block_sizes[i], actual_parameter_block_sizes[i]);
num_parameters += parameter_block_sizes[i];
}
scoped_array<double> parameters(new double[num_parameters]);
for (int i = 0; i < num_parameters; ++i) {
parameters[i] = static_cast<double>(i) + 1.0;
}
scoped_array<double> residuals(new double[num_residuals]);
scoped_array<double> jacobians(new double[num_parameters * num_residuals]);
scoped_array<double> actual_residuals(new double[num_residuals]);
scoped_array<double> actual_jacobians
(new double[num_parameters * num_residuals]);
scoped_array<double*> parameter_blocks(
new double*[parameter_block_sizes.size()]);
scoped_array<double*> jacobian_blocks(
new double*[parameter_block_sizes.size()]);
scoped_array<double*> actual_jacobian_blocks(
new double*[parameter_block_sizes.size()]);
num_parameters = 0;
for (int i = 0; i < parameter_block_sizes.size(); ++i) {
parameter_blocks[i] = parameters.get() + num_parameters;
jacobian_blocks[i] = jacobians.get() + num_parameters * num_residuals;
actual_jacobian_blocks[i] =
actual_jacobians.get() + num_parameters * num_residuals;
num_parameters += parameter_block_sizes[i];
}
EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.get(),
residuals.get(), NULL));
EXPECT_TRUE(actual_cost_function.Evaluate(parameter_blocks.get(),
actual_residuals.get(), NULL));
for (int i = 0; i < num_residuals; ++i) {
EXPECT_NEAR(residuals[i], actual_residuals[i], kTolerance)
<< "residual id: " << i;
}
EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.get(),
residuals.get(),
jacobian_blocks.get()));
EXPECT_TRUE(actual_cost_function.Evaluate(parameter_blocks.get(),
actual_residuals.get(),
actual_jacobian_blocks.get()));
for (int i = 0; i < num_residuals; ++i) {
EXPECT_NEAR(residuals[i], actual_residuals[i], kTolerance)
<< "residual : " << i;
}
for (int i = 0; i < num_residuals * num_parameters; ++i) {
EXPECT_NEAR(jacobians[i], actual_jacobians[i], kTolerance)
<< "jacobian : " << i << " "
<< jacobians[i] << " " << actual_jacobians[i];
}
};
struct OneParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, T* residuals) const {
residuals[0] = x1[0] * x1[0];
residuals[1] = x1[1] * x1[1];
return true;
}
};
struct TwoParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1];
return true;
}
};
struct ThreeParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, const T* x3, T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0] + x3[0] * x3[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1] + x3[1] * x3[1];
return true;
}
};
struct FourParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, const T* x3, const T* x4,
T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0] + x3[0] * x3[0]
+ x4[0] * x4[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1] + x3[1] * x3[1]
+ x4[1] * x4[1];
return true;
}
};
struct FiveParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, const T* x3, const T* x4,
const T* x5, T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0] + x3[0] * x3[0]
+ x4[0] * x4[0] + x5[0] * x5[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1] + x3[1] * x3[1]
+ x4[1] * x4[1] + x5[1] * x5[1];
return true;
}
};
struct SixParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, const T* x3, const T* x4,
const T* x5, const T* x6, T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0] + x3[0] * x3[0]
+ x4[0] * x4[0] + x5[0] * x5[0] + x6[0] * x6[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1] + x3[1] * x3[1]
+ x4[1] * x4[1] + x5[1] * x5[1] + x6[1] * x6[1];
return true;
}
};
struct SevenParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, const T* x3, const T* x4,
const T* x5, const T* x6, const T* x7, T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0] + x3[0] * x3[0]
+ x4[0] * x4[0] + x5[0] * x5[0] + x6[0] * x6[0] + x7[0] * x7[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1] + x3[1] * x3[1]
+ x4[1] * x4[1] + x5[1] * x5[1] + x6[1] * x6[1] + x7[1] * x7[1];
return true;
}
};
struct EightParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, const T* x3, const T* x4,
const T* x5, const T* x6, const T* x7, const T* x8,
T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0] + x3[0] * x3[0]
+ x4[0] * x4[0] + x5[0] * x5[0] + x6[0] * x6[0] + x7[0] * x7[0]
+ x8[0] * x8[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1] + x3[1] * x3[1]
+ x4[1] * x4[1] + x5[1] * x5[1] + x6[1] * x6[1] + x7[1] * x7[1]
+ x8[1] * x8[1];
return true;
}
};
struct NineParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, const T* x3, const T* x4,
const T* x5, const T* x6, const T* x7, const T* x8,
const T* x9, T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0] + x3[0] * x3[0]
+ x4[0] * x4[0] + x5[0] * x5[0] + x6[0] * x6[0] + x7[0] * x7[0]
+ x8[0] * x8[0] + x9[0] * x9[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1] + x3[1] * x3[1]
+ x4[1] * x4[1] + x5[1] * x5[1] + x6[1] * x6[1] + x7[1] * x7[1]
+ x8[1] * x8[1] + x9[1] * x9[1];
return true;
}
};
struct TenParameterBlockFunctor {
public:
template <typename T>
bool operator()(const T* x1, const T* x2, const T* x3, const T* x4,
const T* x5, const T* x6, const T* x7, const T* x8,
const T* x9, const T* x10, T* residuals) const {
residuals[0] = x1[0] * x1[0] + x2[0] * x2[0] + x3[0] * x3[0]
+ x4[0] * x4[0] + x5[0] * x5[0] + x6[0] * x6[0] + x7[0] * x7[0]
+ x8[0] * x8[0] + x9[0] * x9[0] + x10[0] * x10[0];
residuals[1] = x1[1] * x1[1] + x2[1] * x2[1] + x3[1] * x3[1]
+ x4[1] * x4[1] + x5[1] * x5[1] + x6[1] * x6[1] + x7[1] * x7[1]
+ x8[1] * x8[1] + x9[1] * x9[1] + x10[1] * x10[1];
return true;
}
};
#define TEST_BODY(NAME) \
TEST(CostFunctionToFunctor, NAME) { \
scoped_ptr<CostFunction> cost_function( \
new AutoDiffCostFunction< \
CostFunctionToFunctor<2, PARAMETER_BLOCK_SIZES >, \
2, PARAMETER_BLOCK_SIZES>(new CostFunctionToFunctor< \
2, PARAMETER_BLOCK_SIZES >( \
new AutoDiffCostFunction< \
NAME##Functor, 2, PARAMETER_BLOCK_SIZES >( \
new NAME##Functor)))); \
\
scoped_ptr<CostFunction> actual_cost_function( \
new AutoDiffCostFunction<NAME##Functor, 2, PARAMETER_BLOCK_SIZES >( \
new NAME##Functor)); \
ExpectCostFunctionsAreEqual(*cost_function, *actual_cost_function); \
}
#define PARAMETER_BLOCK_SIZES 2
TEST_BODY(OneParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2
TEST_BODY(TwoParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2,2
TEST_BODY(ThreeParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2,2,2
TEST_BODY(FourParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2,2,2,2
TEST_BODY(FiveParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2,2,2,2,2
TEST_BODY(SixParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2,2,2,2,2,2
TEST_BODY(SevenParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2,2,2,2,2,2,2
TEST_BODY(EightParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2,2,2,2,2,2,2,2
TEST_BODY(NineParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#define PARAMETER_BLOCK_SIZES 2,2,2,2,2,2,2,2,2,2
TEST_BODY(TenParameterBlock)
#undef PARAMETER_BLOCK_SIZES
#undef TEST_BODY
} // namespace internal
} // namespace ceres