| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2013 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/incomplete_lq_factorization.h" |
| |
| #include "Eigen/Dense" |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| void ExpectMatricesAreEqual(const CompressedRowSparseMatrix& expected, |
| const CompressedRowSparseMatrix& actual, |
| const double tolerance) { |
| EXPECT_EQ(expected.num_rows(), actual.num_rows()); |
| EXPECT_EQ(expected.num_cols(), actual.num_cols()); |
| for (int i = 0; i < expected.num_rows(); ++i) { |
| EXPECT_EQ(expected.rows()[i], actual.rows()[i]); |
| } |
| |
| for (int i = 0; i < actual.num_nonzeros(); ++i) { |
| EXPECT_EQ(expected.cols()[i], actual.cols()[i]); |
| EXPECT_NEAR(expected.values()[i], actual.values()[i], tolerance); |
| } |
| } |
| |
| TEST(IncompleteQRFactorization, OneByOneMatrix) { |
| CompressedRowSparseMatrix matrix(1, 1, 1); |
| matrix.mutable_rows()[0] = 0; |
| matrix.mutable_rows()[1] = 1; |
| matrix.mutable_cols()[0] = 0; |
| matrix.mutable_values()[0] = 2; |
| |
| scoped_ptr<CompressedRowSparseMatrix> l( |
| IncompleteLQFactorization(matrix, 1, 0.0, 1, 0.0)); |
| ExpectMatricesAreEqual(matrix, *l, 1e-16); |
| } |
| |
| TEST(IncompleteLQFactorization, CompleteFactorization) { |
| double dense_matrix[] = { |
| 0.00000, 0.00000, 0.20522, 0.00000, 0.49077, 0.92835, 0.00000, 0.83825, 0.00000, 0.00000, // NOLINT |
| 0.00000, 0.00000, 0.00000, 0.62491, 0.38144, 0.00000, 0.79394, 0.79178, 0.00000, 0.44382, // NOLINT |
| 0.00000, 0.00000, 0.00000, 0.61517, 0.55941, 0.00000, 0.00000, 0.00000, 0.00000, 0.60664, // NOLINT |
| 0.00000, 0.00000, 0.00000, 0.00000, 0.45031, 0.00000, 0.64132, 0.00000, 0.38832, 0.00000, // NOLINT |
| 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.57121, 0.00000, 0.01375, 0.70640, 0.00000, // NOLINT |
| 0.00000, 0.00000, 0.07451, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, // NOLINT |
| 0.68095, 0.00000, 0.00000, 0.95473, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, // NOLINT |
| 0.00000, 0.00000, 0.00000, 0.00000, 0.59374, 0.00000, 0.00000, 0.00000, 0.49139, 0.00000, // NOLINT |
| 0.91276, 0.96641, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.91797, // NOLINT |
| 0.96828, 0.00000, 0.00000, 0.72583, 0.00000, 0.00000, 0.81459, 0.00000, 0.04560, 0.00000 // NOLINT |
| }; |
| |
| CompressedRowSparseMatrix matrix(10, 10, 100); |
| int* rows = matrix.mutable_rows(); |
| int* cols = matrix.mutable_cols(); |
| double* values = matrix.mutable_values(); |
| |
| int idx = 0; |
| for (int i = 0; i < 10; ++i) { |
| rows[i] = idx; |
| for (int j = 0; j < 10; ++j) { |
| const double v = dense_matrix[i * 10 + j]; |
| if (fabs(v) > 1e-6) { |
| cols[idx] = j; |
| values[idx] = v; |
| ++idx; |
| } |
| } |
| } |
| rows[10] = idx; |
| |
| scoped_ptr<CompressedRowSparseMatrix> lmatrix( |
| IncompleteLQFactorization(matrix, 10, 0.0, 10, 0.0)); |
| |
| ConstMatrixRef mref(dense_matrix, 10, 10); |
| |
| // Use Cholesky factorization to compute the L matrix. |
| Matrix expected_l_matrix = (mref * mref.transpose()).llt().matrixL(); |
| Matrix actual_l_matrix; |
| lmatrix->ToDenseMatrix(&actual_l_matrix); |
| |
| EXPECT_NEAR((expected_l_matrix * expected_l_matrix.transpose() - |
| actual_l_matrix * actual_l_matrix.transpose()).norm(), |
| 0.0, |
| 1e-10) |
| << "expected: \n" << expected_l_matrix |
| << "\actual: \n" << actual_l_matrix; |
| } |
| |
| TEST(IncompleteLQFactorization, DropEntriesAndAddRow) { |
| // Allocate space and then make it a zero sized matrix. |
| CompressedRowSparseMatrix matrix(10, 10, 100); |
| matrix.set_num_rows(0); |
| |
| vector<pair<int, double> > scratch(10); |
| |
| Vector dense_vector(10); |
| dense_vector(0) = 5; |
| dense_vector(1) = 1; |
| dense_vector(2) = 2; |
| dense_vector(3) = 3; |
| dense_vector(4) = 1; |
| dense_vector(5) = 4; |
| |
| // Add a row with just one entry. |
| DropEntriesAndAddRow(dense_vector, 1, 1, 0, &scratch, &matrix); |
| EXPECT_EQ(matrix.num_rows(), 1); |
| EXPECT_EQ(matrix.num_cols(), 10); |
| EXPECT_EQ(matrix.num_nonzeros(), 1); |
| EXPECT_EQ(matrix.values()[0], 5.0); |
| EXPECT_EQ(matrix.cols()[0], 0); |
| |
| // Add a row with six entries |
| DropEntriesAndAddRow(dense_vector, 6, 10, 0, &scratch, &matrix); |
| EXPECT_EQ(matrix.num_rows(), 2); |
| EXPECT_EQ(matrix.num_cols(), 10); |
| EXPECT_EQ(matrix.num_nonzeros(), 7); |
| for (int idx = matrix.rows()[1]; idx < matrix.rows()[2]; ++idx) { |
| EXPECT_EQ(matrix.cols()[idx], idx - matrix.rows()[1]); |
| EXPECT_EQ(matrix.values()[idx], dense_vector(idx - matrix.rows()[1])); |
| } |
| |
| // Add the top 3 entries. |
| DropEntriesAndAddRow(dense_vector, 6, 3, 0, &scratch, &matrix); |
| EXPECT_EQ(matrix.num_rows(), 3); |
| EXPECT_EQ(matrix.num_cols(), 10); |
| EXPECT_EQ(matrix.num_nonzeros(), 10); |
| |
| EXPECT_EQ(matrix.cols()[matrix.rows()[2]], 0); |
| EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 1], 3); |
| EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 2], 5); |
| |
| EXPECT_EQ(matrix.values()[matrix.rows()[2]], 5); |
| EXPECT_EQ(matrix.values()[matrix.rows()[2] + 1], 3); |
| EXPECT_EQ(matrix.values()[matrix.rows()[2] + 2], 4); |
| |
| // Only keep entries greater than 1.0; |
| DropEntriesAndAddRow(dense_vector, 6, 6, 0.2, &scratch, &matrix); |
| EXPECT_EQ(matrix.num_rows(), 4); |
| EXPECT_EQ(matrix.num_cols(), 10); |
| EXPECT_EQ(matrix.num_nonzeros(), 14); |
| |
| EXPECT_EQ(matrix.cols()[matrix.rows()[3]], 0); |
| EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 1], 2); |
| EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 2], 3); |
| EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 3], 5); |
| |
| EXPECT_EQ(matrix.values()[matrix.rows()[3]], 5); |
| EXPECT_EQ(matrix.values()[matrix.rows()[3] + 1], 2); |
| EXPECT_EQ(matrix.values()[matrix.rows()[3] + 2], 3); |
| EXPECT_EQ(matrix.values()[matrix.rows()[3] + 3], 4); |
| |
| // Only keep the top 2 entries greater than 1.0 |
| DropEntriesAndAddRow(dense_vector, 6, 2, 0.2, &scratch, &matrix); |
| EXPECT_EQ(matrix.num_rows(), 5); |
| EXPECT_EQ(matrix.num_cols(), 10); |
| EXPECT_EQ(matrix.num_nonzeros(), 16); |
| |
| EXPECT_EQ(matrix.cols()[matrix.rows()[4]], 0); |
| EXPECT_EQ(matrix.cols()[matrix.rows()[4] + 1], 5); |
| |
| EXPECT_EQ(matrix.values()[matrix.rows()[4]], 5); |
| EXPECT_EQ(matrix.values()[matrix.rows()[4] + 1], 4); |
| } |
| |
| |
| } // namespace internal |
| } // namespace ceres |