|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/normal_prior.h" | 
|  |  | 
|  | #include <cstddef> | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/random.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | void RandomVector(Vector* v) { | 
|  | for (int r = 0; r < v->rows(); ++r) | 
|  | (*v)[r] = 2 * RandDouble() - 1; | 
|  | } | 
|  |  | 
|  | void RandomMatrix(Matrix* m) { | 
|  | for (int r = 0; r < m->rows(); ++r) { | 
|  | for (int c = 0; c < m->cols(); ++c) { | 
|  | (*m)(r, c) = 2 * RandDouble() - 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(NormalPriorTest, ResidualAtRandomPosition) { | 
|  | srand(5); | 
|  |  | 
|  | for (int num_rows = 1; num_rows < 5; ++num_rows) { | 
|  | for (int num_cols = 1; num_cols < 5; ++num_cols) { | 
|  | Vector b(num_cols); | 
|  | RandomVector(&b); | 
|  |  | 
|  | Matrix A(num_rows, num_cols); | 
|  | RandomMatrix(&A); | 
|  |  | 
|  | double * x = new double[num_cols]; | 
|  | for (int i = 0; i < num_cols; ++i) | 
|  | x[i] = 2 * RandDouble() - 1; | 
|  |  | 
|  | double * jacobian = new double[num_rows * num_cols]; | 
|  | Vector residuals(num_rows); | 
|  |  | 
|  | NormalPrior prior(A, b); | 
|  | prior.Evaluate(&x, residuals.data(), &jacobian); | 
|  |  | 
|  | // Compare the norm of the residual | 
|  | double residual_diff_norm = | 
|  | (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); | 
|  | EXPECT_NEAR(residual_diff_norm, 0, 1e-10); | 
|  |  | 
|  | // Compare the jacobians | 
|  | MatrixRef J(jacobian, num_rows, num_cols); | 
|  | double jacobian_diff_norm = (J - A).norm(); | 
|  | EXPECT_NEAR(jacobian_diff_norm, 0.0, 1e-10); | 
|  |  | 
|  | delete []x; | 
|  | delete []jacobian; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(NormalPriorTest, ResidualAtRandomPositionNullJacobians) { | 
|  | srand(5); | 
|  |  | 
|  | for (int num_rows = 1; num_rows < 5; ++num_rows) { | 
|  | for (int num_cols = 1; num_cols < 5; ++num_cols) { | 
|  | Vector b(num_cols); | 
|  | RandomVector(&b); | 
|  |  | 
|  | Matrix A(num_rows, num_cols); | 
|  | RandomMatrix(&A); | 
|  |  | 
|  | double * x = new double[num_cols]; | 
|  | for (int i = 0; i < num_cols; ++i) | 
|  | x[i] = 2 * RandDouble() - 1; | 
|  |  | 
|  | double* jacobians[1]; | 
|  | jacobians[0] = NULL; | 
|  |  | 
|  | Vector residuals(num_rows); | 
|  |  | 
|  | NormalPrior prior(A, b); | 
|  | prior.Evaluate(&x, residuals.data(), jacobians); | 
|  |  | 
|  | // Compare the norm of the residual | 
|  | double residual_diff_norm = | 
|  | (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); | 
|  | EXPECT_NEAR(residual_diff_norm, 0, 1e-10); | 
|  |  | 
|  | prior.Evaluate(&x, residuals.data(), NULL); | 
|  | // Compare the norm of the residual | 
|  | residual_diff_norm = | 
|  | (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); | 
|  | EXPECT_NEAR(residual_diff_norm, 0, 1e-10); | 
|  |  | 
|  |  | 
|  | delete []x; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |