| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | //         sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/residual_block.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstddef> | 
 | #include <vector> | 
 | #include "ceres/corrector.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/residual_block_utils.h" | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/fixed_array.h" | 
 | #include "ceres/local_parameterization.h" | 
 | #include "ceres/loss_function.h" | 
 | #include "ceres/small_blas.h" | 
 |  | 
 | using Eigen::Dynamic; | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | ResidualBlock::ResidualBlock( | 
 |     const CostFunction* cost_function, | 
 |     const LossFunction* loss_function, | 
 |     const std::vector<ParameterBlock*>& parameter_blocks, | 
 |     int index) | 
 |     : cost_function_(cost_function), | 
 |       loss_function_(loss_function), | 
 |       parameter_blocks_( | 
 |           new ParameterBlock* [ | 
 |               cost_function->parameter_block_sizes().size()]), | 
 |       index_(index) { | 
 |   std::copy(parameter_blocks.begin(), | 
 |             parameter_blocks.end(), | 
 |             parameter_blocks_.get()); | 
 | } | 
 |  | 
 | bool ResidualBlock::Evaluate(const bool apply_loss_function, | 
 |                              double* cost, | 
 |                              double* residuals, | 
 |                              double** jacobians, | 
 |                              double* scratch) const { | 
 |   const int num_parameter_blocks = NumParameterBlocks(); | 
 |   const int num_residuals = cost_function_->num_residuals(); | 
 |  | 
 |   // Collect the parameters from their blocks. This will rarely allocate, since | 
 |   // residuals taking more than 8 parameter block arguments are rare. | 
 |   FixedArray<const double*, 8> parameters(num_parameter_blocks); | 
 |   for (int i = 0; i < num_parameter_blocks; ++i) { | 
 |     parameters[i] = parameter_blocks_[i]->state(); | 
 |   } | 
 |  | 
 |   // Put pointers into the scratch space into global_jacobians as appropriate. | 
 |   FixedArray<double*, 8> global_jacobians(num_parameter_blocks); | 
 |   if (jacobians != NULL) { | 
 |     for (int i = 0; i < num_parameter_blocks; ++i) { | 
 |       const ParameterBlock* parameter_block = parameter_blocks_[i]; | 
 |       if (jacobians[i] != NULL && | 
 |           parameter_block->LocalParameterizationJacobian() != NULL) { | 
 |         global_jacobians[i] = scratch; | 
 |         scratch += num_residuals * parameter_block->Size(); | 
 |       } else { | 
 |         global_jacobians[i] = jacobians[i]; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If the caller didn't request residuals, use the scratch space for them. | 
 |   bool outputting_residuals = (residuals != NULL); | 
 |   if (!outputting_residuals) { | 
 |     residuals = scratch; | 
 |   } | 
 |  | 
 |   // Invalidate the evaluation buffers so that we can check them after | 
 |   // the CostFunction::Evaluate call, to see if all the return values | 
 |   // that were required were written to and that they are finite. | 
 |   double** eval_jacobians = (jacobians != NULL) ? global_jacobians.get() : NULL; | 
 |  | 
 |   InvalidateEvaluation(*this, cost, residuals, eval_jacobians); | 
 |  | 
 |   if (!cost_function_->Evaluate(parameters.get(), residuals, eval_jacobians)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!IsEvaluationValid(*this, | 
 |                          parameters.get(), | 
 |                          cost, | 
 |                          residuals, | 
 |                          eval_jacobians)) { | 
 |     std::string message = | 
 |         "\n\n" | 
 |         "Error in evaluating the ResidualBlock.\n\n" | 
 |         "There are two possible reasons. Either the CostFunction did not evaluate and fill all    \n"  // NOLINT | 
 |         "residual and jacobians that were requested or there was a non-finite value (nan/infinite)\n"  // NOLINT | 
 |         "generated during the or jacobian computation. \n\n" + | 
 |         EvaluationToString(*this, | 
 |                            parameters.get(), | 
 |                            cost, | 
 |                            residuals, | 
 |                            eval_jacobians); | 
 |     LOG(WARNING) << message; | 
 |     return false; | 
 |   } | 
 |  | 
 |   double squared_norm = VectorRef(residuals, num_residuals).squaredNorm(); | 
 |  | 
 |   // Update the jacobians with the local parameterizations. | 
 |   if (jacobians != NULL) { | 
 |     for (int i = 0; i < num_parameter_blocks; ++i) { | 
 |       if (jacobians[i] != NULL) { | 
 |         const ParameterBlock* parameter_block = parameter_blocks_[i]; | 
 |  | 
 |         // Apply local reparameterization to the jacobians. | 
 |         if (parameter_block->LocalParameterizationJacobian() != NULL) { | 
 |           // jacobians[i] = global_jacobians[i] * global_to_local_jacobian. | 
 |           MatrixMatrixMultiply<Dynamic, Dynamic, Dynamic, Dynamic, 0>( | 
 |               global_jacobians[i], | 
 |               num_residuals, | 
 |               parameter_block->Size(), | 
 |               parameter_block->LocalParameterizationJacobian(), | 
 |               parameter_block->Size(), | 
 |               parameter_block->LocalSize(), | 
 |               jacobians[i], 0, 0,  num_residuals, parameter_block->LocalSize()); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (loss_function_ == NULL || !apply_loss_function) { | 
 |     *cost = 0.5 * squared_norm; | 
 |     return true; | 
 |   } | 
 |  | 
 |   double rho[3]; | 
 |   loss_function_->Evaluate(squared_norm, rho); | 
 |   *cost = 0.5 * rho[0]; | 
 |  | 
 |   // No jacobians and not outputting residuals? All done. Doing an early exit | 
 |   // here avoids constructing the "Corrector" object below in a common case. | 
 |   if (jacobians == NULL && !outputting_residuals) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Correct for the effects of the loss function. The jacobians need to be | 
 |   // corrected before the residuals, since they use the uncorrected residuals. | 
 |   Corrector correct(squared_norm, rho); | 
 |   if (jacobians != NULL) { | 
 |     for (int i = 0; i < num_parameter_blocks; ++i) { | 
 |       if (jacobians[i] != NULL) { | 
 |         const ParameterBlock* parameter_block = parameter_blocks_[i]; | 
 |  | 
 |         // Correct the jacobians for the loss function. | 
 |         correct.CorrectJacobian(num_residuals, | 
 |                                 parameter_block->LocalSize(), | 
 |                                 residuals, | 
 |                                 jacobians[i]); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Correct the residuals with the loss function. | 
 |   if (outputting_residuals) { | 
 |     correct.CorrectResiduals(num_residuals, residuals); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | int ResidualBlock::NumScratchDoublesForEvaluate() const { | 
 |   // Compute the amount of scratch space needed to store the full-sized | 
 |   // jacobians. For parameters that have no local parameterization  no storage | 
 |   // is needed and the passed-in jacobian array is used directly. Also include | 
 |   // space to store the residuals, which is needed for cost-only evaluations. | 
 |   // This is slightly pessimistic, since both won't be needed all the time, but | 
 |   // the amount of excess should not cause problems for the caller. | 
 |   int num_parameters = NumParameterBlocks(); | 
 |   int scratch_doubles = 1; | 
 |   for (int i = 0; i < num_parameters; ++i) { | 
 |     const ParameterBlock* parameter_block = parameter_blocks_[i]; | 
 |     if (!parameter_block->IsConstant() && | 
 |         parameter_block->LocalParameterizationJacobian() != NULL) { | 
 |       scratch_doubles += parameter_block->Size(); | 
 |     } | 
 |   } | 
 |   scratch_doubles *= NumResiduals(); | 
 |   return scratch_doubles; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |