|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/block_random_access_sparse_matrix.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/mutex.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::make_pair; | 
|  | using std::pair; | 
|  | using std::set; | 
|  | using std::vector; | 
|  |  | 
|  | BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix( | 
|  | const vector<int>& blocks, | 
|  | const set<pair<int, int> >& block_pairs) | 
|  | : kMaxRowBlocks(10 * 1000 * 1000), | 
|  | blocks_(blocks) { | 
|  | CHECK_LT(blocks.size(), kMaxRowBlocks); | 
|  |  | 
|  | // Build the row/column layout vector and count the number of scalar | 
|  | // rows/columns. | 
|  | int num_cols = 0; | 
|  | block_positions_.reserve(blocks_.size()); | 
|  | for (int i = 0; i < blocks_.size(); ++i) { | 
|  | block_positions_.push_back(num_cols); | 
|  | num_cols += blocks_[i]; | 
|  | } | 
|  |  | 
|  | // Count the number of scalar non-zero entries and build the layout | 
|  | // object for looking into the values array of the | 
|  | // TripletSparseMatrix. | 
|  | int num_nonzeros = 0; | 
|  | for (set<pair<int, int> >::const_iterator it = block_pairs.begin(); | 
|  | it != block_pairs.end(); | 
|  | ++it) { | 
|  | const int row_block_size = blocks_[it->first]; | 
|  | const int col_block_size = blocks_[it->second]; | 
|  | num_nonzeros += row_block_size * col_block_size; | 
|  | } | 
|  |  | 
|  | VLOG(1) << "Matrix Size [" << num_cols | 
|  | << "," << num_cols | 
|  | << "] " << num_nonzeros; | 
|  |  | 
|  | tsm_.reset(new TripletSparseMatrix(num_cols, num_cols, num_nonzeros)); | 
|  | tsm_->set_num_nonzeros(num_nonzeros); | 
|  | int* rows = tsm_->mutable_rows(); | 
|  | int* cols = tsm_->mutable_cols(); | 
|  | double* values = tsm_->mutable_values(); | 
|  |  | 
|  | int pos = 0; | 
|  | for (set<pair<int, int> >::const_iterator it = block_pairs.begin(); | 
|  | it != block_pairs.end(); | 
|  | ++it) { | 
|  | const int row_block_size = blocks_[it->first]; | 
|  | const int col_block_size = blocks_[it->second]; | 
|  | cell_values_.push_back(make_pair(make_pair(it->first, it->second), | 
|  | values + pos)); | 
|  | layout_[IntPairToLong(it->first, it->second)] = | 
|  | new CellInfo(values + pos); | 
|  | pos += row_block_size * col_block_size; | 
|  | } | 
|  |  | 
|  | // Fill the sparsity pattern of the underlying matrix. | 
|  | for (set<pair<int, int> >::const_iterator it = block_pairs.begin(); | 
|  | it != block_pairs.end(); | 
|  | ++it) { | 
|  | const int row_block_id = it->first; | 
|  | const int col_block_id = it->second; | 
|  | const int row_block_size = blocks_[row_block_id]; | 
|  | const int col_block_size = blocks_[col_block_id]; | 
|  | int pos = | 
|  | layout_[IntPairToLong(row_block_id, col_block_id)]->values - values; | 
|  | for (int r = 0; r < row_block_size; ++r) { | 
|  | for (int c = 0; c < col_block_size; ++c, ++pos) { | 
|  | rows[pos] = block_positions_[row_block_id] + r; | 
|  | cols[pos] = block_positions_[col_block_id] + c; | 
|  | values[pos] = 1.0; | 
|  | DCHECK_LT(rows[pos], tsm_->num_rows()); | 
|  | DCHECK_LT(cols[pos], tsm_->num_rows()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assume that the user does not hold any locks on any cell blocks | 
|  | // when they are calling SetZero. | 
|  | BlockRandomAccessSparseMatrix::~BlockRandomAccessSparseMatrix() { | 
|  | for (LayoutType::iterator it = layout_.begin(); | 
|  | it != layout_.end(); | 
|  | ++it) { | 
|  | delete it->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id, | 
|  | int col_block_id, | 
|  | int* row, | 
|  | int* col, | 
|  | int* row_stride, | 
|  | int* col_stride) { | 
|  | const LayoutType::iterator it  = | 
|  | layout_.find(IntPairToLong(row_block_id, col_block_id)); | 
|  | if (it == layout_.end()) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Each cell is stored contiguously as its own little dense matrix. | 
|  | *row = 0; | 
|  | *col = 0; | 
|  | *row_stride = blocks_[row_block_id]; | 
|  | *col_stride = blocks_[col_block_id]; | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | // Assume that the user does not hold any locks on any cell blocks | 
|  | // when they are calling SetZero. | 
|  | void BlockRandomAccessSparseMatrix::SetZero() { | 
|  | if (tsm_->num_nonzeros()) { | 
|  | VectorRef(tsm_->mutable_values(), | 
|  | tsm_->num_nonzeros()).setZero(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockRandomAccessSparseMatrix::SymmetricRightMultiply(const double* x, | 
|  | double* y) const { | 
|  | vector< pair<pair<int, int>, double*> >::const_iterator it = | 
|  | cell_values_.begin(); | 
|  | for (; it != cell_values_.end(); ++it) { | 
|  | const int row = it->first.first; | 
|  | const int row_block_size = blocks_[row]; | 
|  | const int row_block_pos = block_positions_[row]; | 
|  |  | 
|  | const int col = it->first.second; | 
|  | const int col_block_size = blocks_[col]; | 
|  | const int col_block_pos = block_positions_[col]; | 
|  |  | 
|  | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
|  | it->second, row_block_size, col_block_size, | 
|  | x + col_block_pos, | 
|  | y + row_block_pos); | 
|  |  | 
|  | // Since the matrix is symmetric, but only the upper triangular | 
|  | // part is stored, if the block being accessed is not a diagonal | 
|  | // block, then use the same block to do the corresponding lower | 
|  | // triangular multiply also. | 
|  | if (row != col) { | 
|  | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
|  | it->second, row_block_size, col_block_size, | 
|  | x + row_block_pos, | 
|  | y + col_block_pos); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |