|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2017 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/invert_psd_matrix.h" | 
|  |  | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | static const bool kFullRank = true; | 
|  | static const bool kRankDeficient = false; | 
|  |  | 
|  | template <int kSize> | 
|  | typename EigenTypes<kSize, kSize>::Matrix RandomPSDMatrixWithEigenValues( | 
|  | const typename EigenTypes<kSize>::Vector& eigenvalues) { | 
|  | typename EigenTypes<kSize, kSize>::Matrix m(eigenvalues.rows(), | 
|  | eigenvalues.rows()); | 
|  | m.setRandom(); | 
|  | Eigen::SelfAdjointEigenSolver<typename EigenTypes<kSize, kSize>::Matrix> es( | 
|  | m); | 
|  | return es.eigenvectors() * eigenvalues.asDiagonal() * | 
|  | es.eigenvectors().transpose(); | 
|  | } | 
|  |  | 
|  | TEST(InvertPSDMatrix, Identity3x3) { | 
|  | const Matrix m = Matrix::Identity(3, 3); | 
|  | const Matrix inverse_m = InvertPSDMatrix<3>(kFullRank, m); | 
|  | EXPECT_NEAR((inverse_m - m).norm() / m.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon()); | 
|  | } | 
|  |  | 
|  | TEST(InvertPSDMatrix, FullRank5x5) { | 
|  | EigenTypes<5>::Vector eigenvalues; | 
|  | eigenvalues.setRandom(); | 
|  | eigenvalues = eigenvalues.array().abs().matrix(); | 
|  | const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues); | 
|  | const Matrix inverse_m = InvertPSDMatrix<5>(kFullRank, m); | 
|  | EXPECT_NEAR((m * inverse_m - Matrix::Identity(5, 5)).norm() / 5.0, | 
|  | 0.0, | 
|  | 10 * std::numeric_limits<double>::epsilon()); | 
|  | } | 
|  |  | 
|  | TEST(InvertPSDMatrix, RankDeficient5x5) { | 
|  | EigenTypes<5>::Vector eigenvalues; | 
|  | eigenvalues.setRandom(); | 
|  | eigenvalues = eigenvalues.array().abs().matrix(); | 
|  | eigenvalues(3) = 0.0; | 
|  | const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues); | 
|  | const Matrix inverse_m = InvertPSDMatrix<5>(kRankDeficient, m); | 
|  | Matrix pseudo_identity = Matrix::Identity(5, 5); | 
|  | pseudo_identity(3, 3) = 0.0; | 
|  | EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(), | 
|  | 0.0, | 
|  | 10 * std::numeric_limits<double>::epsilon()); | 
|  | } | 
|  |  | 
|  | TEST(InvertPSDMatrix, DynamicFullRank5x5) { | 
|  | EigenTypes<Eigen::Dynamic>::Vector eigenvalues(5); | 
|  | eigenvalues.setRandom(); | 
|  | eigenvalues = eigenvalues.array().abs().matrix(); | 
|  | const Matrix m = RandomPSDMatrixWithEigenValues<Eigen::Dynamic>(eigenvalues); | 
|  | const Matrix inverse_m = InvertPSDMatrix<Eigen::Dynamic>(kFullRank, m); | 
|  | EXPECT_NEAR((m * inverse_m - Matrix::Identity(5, 5)).norm() / 5.0, | 
|  | 0.0, | 
|  | 10 * std::numeric_limits<double>::epsilon()); | 
|  | } | 
|  |  | 
|  | TEST(InvertPSDMatrix, DynamicRankDeficient5x5) { | 
|  | EigenTypes<Eigen::Dynamic>::Vector eigenvalues(5); | 
|  | eigenvalues.setRandom(); | 
|  | eigenvalues = eigenvalues.array().abs().matrix(); | 
|  | eigenvalues(3) = 0.0; | 
|  | const Matrix m = RandomPSDMatrixWithEigenValues<Eigen::Dynamic>(eigenvalues); | 
|  | const Matrix inverse_m = InvertPSDMatrix<Eigen::Dynamic>(kRankDeficient, m); | 
|  | Matrix pseudo_identity = Matrix::Identity(5, 5); | 
|  | pseudo_identity(3, 3) = 0.0; | 
|  | EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(), | 
|  | 0.0, | 
|  | 10 * std::numeric_limits<double>::epsilon()); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |