| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/levenberg_marquardt_strategy.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/trust_region_strategy.h" |
| #include "glog/logging.h" |
| #include "gmock/gmock.h" |
| #include "gmock/mock-log.h" |
| #include "gtest/gtest.h" |
| |
| using testing::AllOf; |
| using testing::AnyNumber; |
| using testing::HasSubstr; |
| using testing::ScopedMockLog; |
| using testing::_; |
| |
| namespace ceres { |
| namespace internal { |
| |
| const double kTolerance = 1e-16; |
| |
| // Linear solver that takes as input a vector and checks that the |
| // caller passes the same vector as LinearSolver::PerSolveOptions.D. |
| class RegularizationCheckingLinearSolver : public DenseSparseMatrixSolver { |
| public: |
| RegularizationCheckingLinearSolver(const int num_cols, const double* diagonal) |
| : num_cols_(num_cols), |
| diagonal_(diagonal) { |
| } |
| |
| virtual ~RegularizationCheckingLinearSolver() {} |
| |
| private: |
| virtual LinearSolver::Summary SolveImpl( |
| DenseSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double* x) { |
| CHECK_NOTNULL(per_solve_options.D); |
| for (int i = 0; i < num_cols_; ++i) { |
| EXPECT_NEAR(per_solve_options.D[i], diagonal_[i], kTolerance) |
| << i << " " << per_solve_options.D[i] << " " << diagonal_[i]; |
| } |
| return LinearSolver::Summary(); |
| } |
| |
| const int num_cols_; |
| const double* diagonal_; |
| }; |
| |
| TEST(LevenbergMarquardtStrategy, AcceptRejectStepRadiusScaling) { |
| TrustRegionStrategy::Options options; |
| options.initial_radius = 2.0; |
| options.max_radius = 20.0; |
| options.min_lm_diagonal = 1e-8; |
| options.max_lm_diagonal = 1e8; |
| |
| // We need a non-null pointer here, so anything should do. |
| scoped_ptr<LinearSolver> linear_solver( |
| new RegularizationCheckingLinearSolver(0, NULL)); |
| options.linear_solver = linear_solver.get(); |
| |
| LevenbergMarquardtStrategy lms(options); |
| EXPECT_EQ(lms.Radius(), options.initial_radius); |
| lms.StepRejected(0.0); |
| EXPECT_EQ(lms.Radius(), 1.0); |
| lms.StepRejected(-1.0); |
| EXPECT_EQ(lms.Radius(), 0.25); |
| lms.StepAccepted(1.0); |
| EXPECT_EQ(lms.Radius(), 0.25 * 3.0); |
| lms.StepAccepted(1.0); |
| EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0); |
| lms.StepAccepted(0.25); |
| EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125); |
| lms.StepAccepted(1.0); |
| EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0); |
| lms.StepAccepted(1.0); |
| EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0 * 3.0); |
| lms.StepAccepted(1.0); |
| EXPECT_EQ(lms.Radius(), options.max_radius); |
| } |
| |
| TEST(LevenbergMarquardtStrategy, CorrectDiagonalToLinearSolver) { |
| Matrix jacobian(2, 3); |
| jacobian.setZero(); |
| jacobian(0, 0) = 0.0; |
| jacobian(0, 1) = 1.0; |
| jacobian(1, 1) = 1.0; |
| jacobian(0, 2) = 100.0; |
| |
| double residual = 1.0; |
| double x[3]; |
| DenseSparseMatrix dsm(jacobian); |
| |
| TrustRegionStrategy::Options options; |
| options.initial_radius = 2.0; |
| options.max_radius = 20.0; |
| options.min_lm_diagonal = 1e-2; |
| options.max_lm_diagonal = 1e2; |
| |
| double diagonal[3]; |
| diagonal[0] = options.min_lm_diagonal; |
| diagonal[1] = 2.0; |
| diagonal[2] = options.max_lm_diagonal; |
| for (int i = 0; i < 3; ++i) { |
| diagonal[i] = sqrt(diagonal[i] / options.initial_radius); |
| } |
| |
| RegularizationCheckingLinearSolver linear_solver(3, diagonal); |
| options.linear_solver = &linear_solver; |
| |
| LevenbergMarquardtStrategy lms(options); |
| TrustRegionStrategy::PerSolveOptions pso; |
| |
| { |
| ScopedMockLog log; |
| EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber()); |
| // Use GLOG_WARNING to support MSVC if GLOG_NO_ABBREVIATED_SEVERITIES |
| // is defined. |
| EXPECT_CALL(log, Log(google::GLOG_WARNING, _, |
| HasSubstr("Failed to compute a step"))); |
| |
| TrustRegionStrategy::Summary summary = |
| lms.ComputeStep(pso, &dsm, &residual, x); |
| EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_FAILURE); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |