| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // |
| // A simple implementation of N-dimensional dual numbers, for automatically |
| // computing exact derivatives of functions. |
| // |
| // While a complete treatment of the mechanics of automatic differentation is |
| // beyond the scope of this header (see |
| // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the |
| // basic idea is to extend normal arithmetic with an extra element, "e," often |
| // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual |
| // numbers are extensions of the real numbers analogous to complex numbers: |
| // whereas complex numbers augment the reals by introducing an imaginary unit i |
| // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such |
| // that e^2 = 0. Dual numbers have two components: the "real" component and the |
| // "infinitesimal" component, generally written as x + y*e. Surprisingly, this |
| // leads to a convenient method for computing exact derivatives without needing |
| // to manipulate complicated symbolic expressions. |
| // |
| // For example, consider the function |
| // |
| // f(x) = x^2 , |
| // |
| // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20. |
| // Next, augument 10 with an infinitesimal to get: |
| // |
| // f(10 + e) = (10 + e)^2 |
| // = 100 + 2 * 10 * e + e^2 |
| // = 100 + 20 * e -+- |
| // -- | |
| // | +--- This is zero, since e^2 = 0 |
| // | |
| // +----------------- This is df/dx! |
| // |
| // Note that the derivative of f with respect to x is simply the infinitesimal |
| // component of the value of f(x + e). So, in order to take the derivative of |
| // any function, it is only necessary to replace the numeric "object" used in |
| // the function with one extended with infinitesimals. The class Jet, defined in |
| // this header, is one such example of this, where substitution is done with |
| // templates. |
| // |
| // To handle derivatives of functions taking multiple arguments, different |
| // infinitesimals are used, one for each variable to take the derivative of. For |
| // example, consider a scalar function of two scalar parameters x and y: |
| // |
| // f(x, y) = x^2 + x * y |
| // |
| // Following the technique above, to compute the derivatives df/dx and df/dy for |
| // f(1, 3) involves doing two evaluations of f, the first time replacing x with |
| // x + e, the second time replacing y with y + e. |
| // |
| // For df/dx: |
| // |
| // f(1 + e, y) = (1 + e)^2 + (1 + e) * 3 |
| // = 1 + 2 * e + 3 + 3 * e |
| // = 4 + 5 * e |
| // |
| // --> df/dx = 5 |
| // |
| // For df/dy: |
| // |
| // f(1, 3 + e) = 1^2 + 1 * (3 + e) |
| // = 1 + 3 + e |
| // = 4 + e |
| // |
| // --> df/dy = 1 |
| // |
| // To take the gradient of f with the implementation of dual numbers ("jets") in |
| // this file, it is necessary to create a single jet type which has components |
| // for the derivative in x and y, and passing them to a templated version of f: |
| // |
| // template<typename T> |
| // T f(const T &x, const T &y) { |
| // return x * x + x * y; |
| // } |
| // |
| // // The "2" means there should be 2 dual number components. |
| // Jet<double, 2> x(0); // Pick the 0th dual number for x. |
| // Jet<double, 2> y(1); // Pick the 1st dual number for y. |
| // Jet<double, 2> z = f(x, y); |
| // |
| // LOG(INFO) << "df/dx = " << z.v[0] |
| // << "df/dy = " << z.v[1]; |
| // |
| // Most users should not use Jet objects directly; a wrapper around Jet objects, |
| // which makes computing the derivative, gradient, or jacobian of templated |
| // functors simple, is in autodiff.h. Even autodiff.h should not be used |
| // directly; instead autodiff_cost_function.h is typically the file of interest. |
| // |
| // For the more mathematically inclined, this file implements first-order |
| // "jets". A 1st order jet is an element of the ring |
| // |
| // T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2 |
| // |
| // which essentially means that each jet consists of a "scalar" value 'a' from T |
| // and a 1st order perturbation vector 'v' of length N: |
| // |
| // x = a + \sum_i v[i] t_i |
| // |
| // A shorthand is to write an element as x = a + u, where u is the pertubation. |
| // Then, the main point about the arithmetic of jets is that the product of |
| // perturbations is zero: |
| // |
| // (a + u) * (b + v) = ab + av + bu + uv |
| // = ab + (av + bu) + 0 |
| // |
| // which is what operator* implements below. Addition is simpler: |
| // |
| // (a + u) + (b + v) = (a + b) + (u + v). |
| // |
| // The only remaining question is how to evaluate the function of a jet, for |
| // which we use the chain rule: |
| // |
| // f(a + u) = f(a) + f'(a) u |
| // |
| // where f'(a) is the (scalar) derivative of f at a. |
| // |
| // By pushing these things through sufficiently and suitably templated |
| // functions, we can do automatic differentiation. Just be sure to turn on |
| // function inlining and common-subexpression elimination, or it will be very |
| // slow! |
| // |
| // WARNING: Most Ceres users should not directly include this file or know the |
| // details of how jets work. Instead the suggested method for automatic |
| // derivatives is to use autodiff_cost_function.h, which is a wrapper around |
| // both jets.h and autodiff.h to make taking derivatives of cost functions for |
| // use in Ceres easier. |
| |
| #ifndef CERES_PUBLIC_JET_H_ |
| #define CERES_PUBLIC_JET_H_ |
| |
| #include <cmath> |
| #include <iosfwd> |
| #include <iostream> // NOLINT |
| #include <limits> |
| #include <string> |
| |
| #include "Eigen/Core" |
| #include "ceres/fpclassify.h" |
| #include "ceres/internal/port.h" |
| |
| namespace ceres { |
| |
| template <typename T, int N> |
| struct Jet { |
| enum { DIMENSION = N }; |
| |
| // Default-construct "a" because otherwise this can lead to false errors about |
| // uninitialized uses when other classes relying on default constructed T |
| // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that |
| // the C++ standard mandates that e.g. default constructed doubles are |
| // initialized to 0.0; see sections 8.5 of the C++03 standard. |
| Jet() : a() { |
| v.setZero(); |
| } |
| |
| // Constructor from scalar: a + 0. |
| explicit Jet(const T& value) { |
| a = value; |
| v.setZero(); |
| } |
| |
| // Constructor from scalar plus variable: a + t_i. |
| Jet(const T& value, int k) { |
| a = value; |
| v.setZero(); |
| v[k] = T(1.0); |
| } |
| |
| // Constructor from scalar and vector part |
| // The use of Eigen::DenseBase allows Eigen expressions |
| // to be passed in without being fully evaluated until |
| // they are assigned to v |
| template<typename Derived> |
| EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v) |
| : a(a), v(v) { |
| } |
| |
| // Compound operators |
| Jet<T, N>& operator+=(const Jet<T, N> &y) { |
| *this = *this + y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator-=(const Jet<T, N> &y) { |
| *this = *this - y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator*=(const Jet<T, N> &y) { |
| *this = *this * y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator/=(const Jet<T, N> &y) { |
| *this = *this / y; |
| return *this; |
| } |
| |
| // Compound with scalar operators. |
| Jet<T, N>& operator+=(const T& s) { |
| *this = *this + s; |
| return *this; |
| } |
| |
| Jet<T, N>& operator-=(const T& s) { |
| *this = *this - s; |
| return *this; |
| } |
| |
| Jet<T, N>& operator*=(const T& s) { |
| *this = *this * s; |
| return *this; |
| } |
| |
| Jet<T, N>& operator/=(const T& s) { |
| *this = *this / s; |
| return *this; |
| } |
| |
| // The scalar part. |
| T a; |
| |
| // The infinitesimal part. |
| // |
| // We allocate Jets on the stack and other places they might not be aligned |
| // to X(=16 [SSE], 32 [AVX] etc)-byte boundaries, which would prevent the safe |
| // use of vectorisation. If we have C++11, we can specify the alignment. |
| // However, the standard gives wide lattitude as to what alignments are valid, |
| // and it might be that the maximum supported alignment *guaranteed* to be |
| // supported is < 16, in which case we do not specify an alignment, as this |
| // implies the host is not a modern x86 machine. If using < C++11, we cannot |
| // specify alignment. |
| #if !defined(CERES_USE_CXX11) || defined(EIGEN_DONT_VECTORIZE) |
| // Without >= C++11, we cannot specify the alignment so fall back to safe, |
| // unvectorised version. |
| Eigen::Matrix<T, N, 1, Eigen::DontAlign> v; |
| #else |
| // Enable vectorisation iff the maximum supported scalar alignment is >= |
| // 16 bytes, as this is the minimum required by Eigen for any vectorisation. |
| // |
| // NOTE: It might be the case that we could get >= 16-byte alignment even if |
| // kMaxAlignBytes < 16. However we can't guarantee that this |
| // would happen (and it should not for any modern x86 machine) and if it |
| // didn't, we could get misaligned Jets. |
| static constexpr int kAlignOrNot = |
| 16 <= ::ceres::port_constants::kMaxAlignBytes |
| ? Eigen::AutoAlign : Eigen::DontAlign; |
| #if defined(EIGEN_MAX_ALIGN_BYTES) |
| // Eigen >= 3.3 supports AVX & FMA instructions that require 32-byte alignment |
| // (greater for AVX512). Rather than duplicating the detection logic, use |
| // Eigen's macro for the alignment size. |
| // |
| // NOTE: EIGEN_MAX_ALIGN_BYTES can be > 16 (e.g. 32 for AVX), even though |
| // kMaxAlignBytes will max out at 16. We are therefore relying on |
| // Eigen's detection logic to ensure that this does not result in |
| // misaligned Jets. |
| #define CERES_JET_ALIGN_BYTES EIGEN_MAX_ALIGN_BYTES |
| #else |
| // Eigen < 3.3 only supported 16-byte alignment. |
| #define CERES_JET_ALIGN_BYTES 16 |
| #endif |
| // Default to the native alignment if 16-byte alignment is not guaranteed to |
| // be supported. We cannot use alignof(T) as if we do, GCC 4.8 complains that |
| // the alignment 'is not an integer constant', although Clang accepts it. |
| static constexpr size_t kAlignment = kAlignOrNot == Eigen::AutoAlign |
| ? CERES_JET_ALIGN_BYTES : alignof(double); |
| #undef CERES_JET_ALIGN_BYTES |
| alignas(kAlignment) Eigen::Matrix<T, N, 1, kAlignOrNot> v; |
| #endif |
| }; |
| |
| // Unary + |
| template<typename T, int N> inline |
| Jet<T, N> const& operator+(const Jet<T, N>& f) { |
| return f; |
| } |
| |
| // TODO(keir): Try adding __attribute__((always_inline)) to these functions to |
| // see if it causes a performance increase. |
| |
| // Unary - |
| template<typename T, int N> inline |
| Jet<T, N> operator-(const Jet<T, N>&f) { |
| return Jet<T, N>(-f.a, -f.v); |
| } |
| |
| // Binary + |
| template<typename T, int N> inline |
| Jet<T, N> operator+(const Jet<T, N>& f, |
| const Jet<T, N>& g) { |
| return Jet<T, N>(f.a + g.a, f.v + g.v); |
| } |
| |
| // Binary + with a scalar: x + s |
| template<typename T, int N> inline |
| Jet<T, N> operator+(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a + s, f.v); |
| } |
| |
| // Binary + with a scalar: s + x |
| template<typename T, int N> inline |
| Jet<T, N> operator+(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(f.a + s, f.v); |
| } |
| |
| // Binary - |
| template<typename T, int N> inline |
| Jet<T, N> operator-(const Jet<T, N>& f, |
| const Jet<T, N>& g) { |
| return Jet<T, N>(f.a - g.a, f.v - g.v); |
| } |
| |
| // Binary - with a scalar: x - s |
| template<typename T, int N> inline |
| Jet<T, N> operator-(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a - s, f.v); |
| } |
| |
| // Binary - with a scalar: s - x |
| template<typename T, int N> inline |
| Jet<T, N> operator-(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(s - f.a, -f.v); |
| } |
| |
| // Binary * |
| template<typename T, int N> inline |
| Jet<T, N> operator*(const Jet<T, N>& f, |
| const Jet<T, N>& g) { |
| return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a); |
| } |
| |
| // Binary * with a scalar: x * s |
| template<typename T, int N> inline |
| Jet<T, N> operator*(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a * s, f.v * s); |
| } |
| |
| // Binary * with a scalar: s * x |
| template<typename T, int N> inline |
| Jet<T, N> operator*(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(f.a * s, f.v * s); |
| } |
| |
| // Binary / |
| template<typename T, int N> inline |
| Jet<T, N> operator/(const Jet<T, N>& f, |
| const Jet<T, N>& g) { |
| // This uses: |
| // |
| // a + u (a + u)(b - v) (a + u)(b - v) |
| // ----- = -------------- = -------------- |
| // b + v (b + v)(b - v) b^2 |
| // |
| // which holds because v*v = 0. |
| const T g_a_inverse = T(1.0) / g.a; |
| const T f_a_by_g_a = f.a * g_a_inverse; |
| return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse); |
| } |
| |
| // Binary / with a scalar: s / x |
| template<typename T, int N> inline |
| Jet<T, N> operator/(T s, const Jet<T, N>& g) { |
| const T minus_s_g_a_inverse2 = -s / (g.a * g.a); |
| return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2); |
| } |
| |
| // Binary / with a scalar: x / s |
| template<typename T, int N> inline |
| Jet<T, N> operator/(const Jet<T, N>& f, T s) { |
| const T s_inverse = T(1.0) / s; |
| return Jet<T, N>(f.a * s_inverse, f.v * s_inverse); |
| } |
| |
| // Binary comparison operators for both scalars and jets. |
| #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \ |
| template<typename T, int N> inline \ |
| bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \ |
| return f.a op g.a; \ |
| } \ |
| template<typename T, int N> inline \ |
| bool operator op(const T& s, const Jet<T, N>& g) { \ |
| return s op g.a; \ |
| } \ |
| template<typename T, int N> inline \ |
| bool operator op(const Jet<T, N>& f, const T& s) { \ |
| return f.a op s; \ |
| } |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT |
| #undef CERES_DEFINE_JET_COMPARISON_OPERATOR |
| |
| // Pull some functions from namespace std. |
| // |
| // This is necessary because we want to use the same name (e.g. 'sqrt') for |
| // double-valued and Jet-valued functions, but we are not allowed to put |
| // Jet-valued functions inside namespace std. |
| // |
| // TODO(keir): Switch to "using". |
| inline double abs (double x) { return std::abs(x); } |
| inline double log (double x) { return std::log(x); } |
| inline double exp (double x) { return std::exp(x); } |
| inline double sqrt (double x) { return std::sqrt(x); } |
| inline double cos (double x) { return std::cos(x); } |
| inline double acos (double x) { return std::acos(x); } |
| inline double sin (double x) { return std::sin(x); } |
| inline double asin (double x) { return std::asin(x); } |
| inline double tan (double x) { return std::tan(x); } |
| inline double atan (double x) { return std::atan(x); } |
| inline double sinh (double x) { return std::sinh(x); } |
| inline double cosh (double x) { return std::cosh(x); } |
| inline double tanh (double x) { return std::tanh(x); } |
| inline double floor (double x) { return std::floor(x); } |
| inline double ceil (double x) { return std::ceil(x); } |
| inline double pow (double x, double y) { return std::pow(x, y); } |
| inline double atan2(double y, double x) { return std::atan2(y, x); } |
| |
| #ifdef CERES_USE_CXX11 |
| // Some new additions to C++11: |
| inline double cbrt (double x) { return std::cbrt(x); } |
| inline double exp2 (double x) { return std::exp2(x); } |
| inline double log2 (double x) { return std::log2(x); } |
| inline double hypot(double x, double y) { return std::hypot(x, y); } |
| inline double fmax(double x, double y) { return std::fmax(x, y); } |
| inline double fmin(double x, double y) { return std::fmin(x, y); } |
| #endif |
| |
| // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule. |
| |
| // abs(x + h) ~= x + h or -(x + h) |
| template <typename T, int N> inline |
| Jet<T, N> abs(const Jet<T, N>& f) { |
| return f.a < T(0.0) ? -f : f; |
| } |
| |
| // log(a + h) ~= log(a) + h / a |
| template <typename T, int N> inline |
| Jet<T, N> log(const Jet<T, N>& f) { |
| const T a_inverse = T(1.0) / f.a; |
| return Jet<T, N>(log(f.a), f.v * a_inverse); |
| } |
| |
| // exp(a + h) ~= exp(a) + exp(a) h |
| template <typename T, int N> inline |
| Jet<T, N> exp(const Jet<T, N>& f) { |
| const T tmp = exp(f.a); |
| return Jet<T, N>(tmp, tmp * f.v); |
| } |
| |
| // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a)) |
| template <typename T, int N> inline |
| Jet<T, N> sqrt(const Jet<T, N>& f) { |
| const T tmp = sqrt(f.a); |
| const T two_a_inverse = T(1.0) / (T(2.0) * tmp); |
| return Jet<T, N>(tmp, f.v * two_a_inverse); |
| } |
| |
| // cos(a + h) ~= cos(a) - sin(a) h |
| template <typename T, int N> inline |
| Jet<T, N> cos(const Jet<T, N>& f) { |
| return Jet<T, N>(cos(f.a), - sin(f.a) * f.v); |
| } |
| |
| // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h |
| template <typename T, int N> inline |
| Jet<T, N> acos(const Jet<T, N>& f) { |
| const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a); |
| return Jet<T, N>(acos(f.a), tmp * f.v); |
| } |
| |
| // sin(a + h) ~= sin(a) + cos(a) h |
| template <typename T, int N> inline |
| Jet<T, N> sin(const Jet<T, N>& f) { |
| return Jet<T, N>(sin(f.a), cos(f.a) * f.v); |
| } |
| |
| // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h |
| template <typename T, int N> inline |
| Jet<T, N> asin(const Jet<T, N>& f) { |
| const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a); |
| return Jet<T, N>(asin(f.a), tmp * f.v); |
| } |
| |
| // tan(a + h) ~= tan(a) + (1 + tan(a)^2) h |
| template <typename T, int N> inline |
| Jet<T, N> tan(const Jet<T, N>& f) { |
| const T tan_a = tan(f.a); |
| const T tmp = T(1.0) + tan_a * tan_a; |
| return Jet<T, N>(tan_a, tmp * f.v); |
| } |
| |
| // atan(a + h) ~= atan(a) + 1 / (1 + a^2) h |
| template <typename T, int N> inline |
| Jet<T, N> atan(const Jet<T, N>& f) { |
| const T tmp = T(1.0) / (T(1.0) + f.a * f.a); |
| return Jet<T, N>(atan(f.a), tmp * f.v); |
| } |
| |
| // sinh(a + h) ~= sinh(a) + cosh(a) h |
| template <typename T, int N> inline |
| Jet<T, N> sinh(const Jet<T, N>& f) { |
| return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v); |
| } |
| |
| // cosh(a + h) ~= cosh(a) + sinh(a) h |
| template <typename T, int N> inline |
| Jet<T, N> cosh(const Jet<T, N>& f) { |
| return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v); |
| } |
| |
| // tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h |
| template <typename T, int N> inline |
| Jet<T, N> tanh(const Jet<T, N>& f) { |
| const T tanh_a = tanh(f.a); |
| const T tmp = T(1.0) - tanh_a * tanh_a; |
| return Jet<T, N>(tanh_a, tmp * f.v); |
| } |
| |
| // The floor function should be used with extreme care as this operation will |
| // result in a zero derivative which provides no information to the solver. |
| // |
| // floor(a + h) ~= floor(a) + 0 |
| template <typename T, int N> inline |
| Jet<T, N> floor(const Jet<T, N>& f) { |
| return Jet<T, N>(floor(f.a)); |
| } |
| |
| // The ceil function should be used with extreme care as this operation will |
| // result in a zero derivative which provides no information to the solver. |
| // |
| // ceil(a + h) ~= ceil(a) + 0 |
| template <typename T, int N> inline |
| Jet<T, N> ceil(const Jet<T, N>& f) { |
| return Jet<T, N>(ceil(f.a)); |
| } |
| |
| #ifdef CERES_USE_CXX11 |
| // Some new additions to C++11: |
| |
| // cbrt(a + h) ~= cbrt(a) + h / (3 a ^ (2/3)) |
| template <typename T, int N> inline |
| Jet<T, N> cbrt(const Jet<T, N>& f) { |
| const T derivative = T(1.0) / (T(3.0) * cbrt(f.a * f.a)); |
| return Jet<T, N>(cbrt(f.a), f.v * derivative); |
| } |
| |
| // exp2(x + h) = 2^(x+h) ~= 2^x + h*2^x*log(2) |
| template <typename T, int N> inline |
| Jet<T, N> exp2(const Jet<T, N>& f) { |
| const T tmp = exp2(f.a); |
| const T derivative = tmp * log(T(2)); |
| return Jet<T, N>(tmp, f.v * derivative); |
| } |
| |
| // log2(x + h) ~= log2(x) + h / (x * log(2)) |
| template <typename T, int N> inline |
| Jet<T, N> log2(const Jet<T, N>& f) { |
| const T derivative = T(1.0) / (f.a * log(T(2))); |
| return Jet<T, N>(log2(f.a), f.v * derivative); |
| } |
| |
| // Like sqrt(x^2 + y^2), |
| // but acts to prevent underflow/overflow for small/large x/y. |
| // Note that the function is non-smooth at x=y=0, |
| // so the derivative is undefined there. |
| template <typename T, int N> inline |
| Jet<T, N> hypot(const Jet<T, N>& x, const Jet<T, N>& y) { |
| // d/da sqrt(a) = 0.5 / sqrt(a) |
| // d/dx x^2 + y^2 = 2x |
| // So by the chain rule: |
| // d/dx sqrt(x^2 + y^2) = 0.5 / sqrt(x^2 + y^2) * 2x = x / sqrt(x^2 + y^2) |
| // d/dy sqrt(x^2 + y^2) = y / sqrt(x^2 + y^2) |
| const T tmp = hypot(x.a, y.a); |
| return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v); |
| } |
| |
| template <typename T, int N> inline |
| const Jet<T, N>& fmax(const Jet<T, N>& x, const Jet<T, N>& y) { |
| return x < y ? y : x; |
| } |
| |
| template <typename T, int N> inline |
| const Jet<T, N>& fmin(const Jet<T, N>& x, const Jet<T, N>& y) { |
| return y < x ? y : x; |
| } |
| #endif // CERES_USE_CXX11 |
| |
| // Bessel functions of the first kind with integer order equal to 0, 1, n. |
| // |
| // Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of |
| // _j[0,1,n](). Where available on MSVC, use _j[0,1,n]() to avoid deprecated |
| // function errors in client code (the specific warning is suppressed when |
| // Ceres itself is built). |
| inline double BesselJ0(double x) { |
| #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| return _j0(x); |
| #else |
| return j0(x); |
| #endif |
| } |
| inline double BesselJ1(double x) { |
| #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| return _j1(x); |
| #else |
| return j1(x); |
| #endif |
| } |
| inline double BesselJn(int n, double x) { |
| #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| return _jn(n, x); |
| #else |
| return jn(n, x); |
| #endif |
| } |
| |
| // For the formulae of the derivatives of the Bessel functions see the book: |
| // Olver, Lozier, Boisvert, Clark, NIST Handbook of Mathematical Functions, |
| // Cambridge University Press 2010. |
| // |
| // Formulae are also available at http://dlmf.nist.gov |
| |
| // See formula http://dlmf.nist.gov/10.6#E3 |
| // j0(a + h) ~= j0(a) - j1(a) h |
| template <typename T, int N> inline |
| Jet<T, N> BesselJ0(const Jet<T, N>& f) { |
| return Jet<T, N>(BesselJ0(f.a), |
| -BesselJ1(f.a) * f.v); |
| } |
| |
| // See formula http://dlmf.nist.gov/10.6#E1 |
| // j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h |
| template <typename T, int N> inline |
| Jet<T, N> BesselJ1(const Jet<T, N>& f) { |
| return Jet<T, N>(BesselJ1(f.a), |
| T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v); |
| } |
| |
| // See formula http://dlmf.nist.gov/10.6#E1 |
| // j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h |
| template <typename T, int N> inline |
| Jet<T, N> BesselJn(int n, const Jet<T, N>& f) { |
| return Jet<T, N>(BesselJn(n, f.a), |
| T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v); |
| } |
| |
| // Jet Classification. It is not clear what the appropriate semantics are for |
| // these classifications. This picks that IsFinite and isnormal are "all" |
| // operations, i.e. all elements of the jet must be finite for the jet itself |
| // to be finite (or normal). For IsNaN and IsInfinite, the answer is less |
| // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any |
| // part of a jet is nan or inf, then the entire jet is nan or inf. This leads |
| // to strange situations like a jet can be both IsInfinite and IsNaN, but in |
| // practice the "any" semantics are the most useful for e.g. checking that |
| // derivatives are sane. |
| |
| // The jet is finite if all parts of the jet are finite. |
| template <typename T, int N> inline |
| bool IsFinite(const Jet<T, N>& f) { |
| if (!IsFinite(f.a)) { |
| return false; |
| } |
| for (int i = 0; i < N; ++i) { |
| if (!IsFinite(f.v[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // The jet is infinite if any part of the jet is infinite. |
| template <typename T, int N> inline |
| bool IsInfinite(const Jet<T, N>& f) { |
| if (IsInfinite(f.a)) { |
| return true; |
| } |
| for (int i = 0; i < N; i++) { |
| if (IsInfinite(f.v[i])) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // The jet is NaN if any part of the jet is NaN. |
| template <typename T, int N> inline |
| bool IsNaN(const Jet<T, N>& f) { |
| if (IsNaN(f.a)) { |
| return true; |
| } |
| for (int i = 0; i < N; ++i) { |
| if (IsNaN(f.v[i])) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // The jet is normal if all parts of the jet are normal. |
| template <typename T, int N> inline |
| bool IsNormal(const Jet<T, N>& f) { |
| if (!IsNormal(f.a)) { |
| return false; |
| } |
| for (int i = 0; i < N; ++i) { |
| if (!IsNormal(f.v[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2) |
| // |
| // In words: the rate of change of theta is 1/r times the rate of |
| // change of (x, y) in the positive angular direction. |
| template <typename T, int N> inline |
| Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) { |
| // Note order of arguments: |
| // |
| // f = a + da |
| // g = b + db |
| |
| T const tmp = T(1.0) / (f.a * f.a + g.a * g.a); |
| return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v)); |
| } |
| |
| |
| // pow -- base is a differentiable function, exponent is a constant. |
| // (a+da)^p ~= a^p + p*a^(p-1) da |
| template <typename T, int N> inline |
| Jet<T, N> pow(const Jet<T, N>& f, double g) { |
| T const tmp = g * pow(f.a, g - T(1.0)); |
| return Jet<T, N>(pow(f.a, g), tmp * f.v); |
| } |
| |
| // pow -- base is a constant, exponent is a differentiable function. |
| // We have various special cases, see the comment for pow(Jet, Jet) for |
| // analysis: |
| // |
| // 1. For f > 0 we have: (f)^(g + dg) ~= f^g + f^g log(f) dg |
| // |
| // 2. For f == 0 and g > 0 we have: (f)^(g + dg) ~= f^g |
| // |
| // 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg |
| // != 0, the derivatives are not defined and we return NaN. |
| |
| template <typename T, int N> inline |
| Jet<T, N> pow(double f, const Jet<T, N>& g) { |
| if (f == 0 && g.a > 0) { |
| // Handle case 2. |
| return Jet<T, N>(T(0.0)); |
| } |
| if (f < 0 && g.a == floor(g.a)) { |
| // Handle case 3. |
| Jet<T, N> ret(pow(f, g.a)); |
| for (int i = 0; i < N; i++) { |
| if (g.v[i] != T(0.0)) { |
| // Return a NaN when g.v != 0. |
| ret.v[i] = std::numeric_limits<T>::quiet_NaN(); |
| } |
| } |
| return ret; |
| } |
| // Handle case 1. |
| T const tmp = pow(f, g.a); |
| return Jet<T, N>(tmp, log(f) * tmp * g.v); |
| } |
| |
| // pow -- both base and exponent are differentiable functions. This has a |
| // variety of special cases that require careful handling. |
| // |
| // 1. For f > 0: |
| // (f + df)^(g + dg) ~= f^g + f^(g - 1) * (g * df + f * log(f) * dg) |
| // The numerical evaluation of f * log(f) for f > 0 is well behaved, even for |
| // extremely small values (e.g. 1e-99). |
| // |
| // 2. For f == 0 and g > 1: (f + df)^(g + dg) ~= 0 |
| // This cases is needed because log(0) can not be evaluated in the f > 0 |
| // expression. However the function f*log(f) is well behaved around f == 0 |
| // and its limit as f-->0 is zero. |
| // |
| // 3. For f == 0 and g == 1: (f + df)^(g + dg) ~= 0 + df |
| // |
| // 4. For f == 0 and 0 < g < 1: The value is finite but the derivatives are not. |
| // |
| // 5. For f == 0 and g < 0: The value and derivatives of f^g are not finite. |
| // |
| // 6. For f == 0 and g == 0: The C standard incorrectly defines 0^0 to be 1 |
| // "because there are applications that can exploit this definition". We |
| // (arbitrarily) decree that derivatives here will be nonfinite, since that |
| // is consistent with the behavior for f == 0, g < 0 and 0 < g < 1. |
| // Practically any definition could have been justified because mathematical |
| // consistency has been lost at this point. |
| // |
| // 7. For f < 0, g integer, dg == 0: (f + df)^(g + dg) ~= f^g + g * f^(g - 1) df |
| // This is equivalent to the case where f is a differentiable function and g |
| // is a constant (to first order). |
| // |
| // 8. For f < 0, g integer, dg != 0: The value is finite but the derivatives are |
| // not, because any change in the value of g moves us away from the point |
| // with a real-valued answer into the region with complex-valued answers. |
| // |
| // 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite. |
| |
| template <typename T, int N> inline |
| Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) { |
| if (f.a == 0 && g.a >= 1) { |
| // Handle cases 2 and 3. |
| if (g.a > 1) { |
| return Jet<T, N>(T(0.0)); |
| } |
| return f; |
| } |
| if (f.a < 0 && g.a == floor(g.a)) { |
| // Handle cases 7 and 8. |
| T const tmp = g.a * pow(f.a, g.a - T(1.0)); |
| Jet<T, N> ret(pow(f.a, g.a), tmp * f.v); |
| for (int i = 0; i < N; i++) { |
| if (g.v[i] != T(0.0)) { |
| // Return a NaN when g.v != 0. |
| ret.v[i] = std::numeric_limits<T>::quiet_NaN(); |
| } |
| } |
| return ret; |
| } |
| // Handle the remaining cases. For cases 4,5,6,9 we allow the log() function |
| // to generate -HUGE_VAL or NaN, since those cases result in a nonfinite |
| // derivative. |
| T const tmp1 = pow(f.a, g.a); |
| T const tmp2 = g.a * pow(f.a, g.a - T(1.0)); |
| T const tmp3 = tmp1 * log(f.a); |
| return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v); |
| } |
| |
| // Define the helper functions Eigen needs to embed Jet types. |
| // |
| // NOTE(keir): machine_epsilon() and precision() are missing, because they don't |
| // work with nested template types (e.g. where the scalar is itself templated). |
| // Among other things, this means that decompositions of Jet's does not work, |
| // for example |
| // |
| // Matrix<Jet<T, N> ... > A, x, b; |
| // ... |
| // A.solve(b, &x) |
| // |
| // does not work and will fail with a strange compiler error. |
| // |
| // TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we |
| // switch to 3.0, also add the rest of the specialization functionality. |
| template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x; } // NOLINT |
| template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x; } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_imag(const Jet<T, N>& ) { return Jet<T, N>(0.0); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_abs (const Jet<T, N>& x) { return fabs(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_abs2(const Jet<T, N>& x) { return x * x; } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_sqrt(const Jet<T, N>& x) { return sqrt(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_exp (const Jet<T, N>& x) { return exp(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_log (const Jet<T, N>& x) { return log(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_sin (const Jet<T, N>& x) { return sin(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_cos (const Jet<T, N>& x) { return cos(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_tan (const Jet<T, N>& x) { return tan(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_atan(const Jet<T, N>& x) { return atan(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_sinh(const Jet<T, N>& x) { return sinh(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_cosh(const Jet<T, N>& x) { return cosh(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_tanh(const Jet<T, N>& x) { return tanh(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); } // NOLINT |
| |
| // Note: This has to be in the ceres namespace for argument dependent lookup to |
| // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with |
| // strange compile errors. |
| template <typename T, int N> |
| inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) { |
| s << "[" << z.a << " ; "; |
| for (int i = 0; i < N; ++i) { |
| s << z.v[i]; |
| if (i != N - 1) { |
| s << ", "; |
| } |
| } |
| s << "]"; |
| return s; |
| } |
| |
| } // namespace ceres |
| |
| namespace Eigen { |
| |
| // Creating a specialization of NumTraits enables placing Jet objects inside |
| // Eigen arrays, getting all the goodness of Eigen combined with autodiff. |
| template<typename T, int N> |
| struct NumTraits<ceres::Jet<T, N> > { |
| typedef ceres::Jet<T, N> Real; |
| typedef ceres::Jet<T, N> NonInteger; |
| typedef ceres::Jet<T, N> Nested; |
| typedef ceres::Jet<T, N> Literal; |
| |
| static typename ceres::Jet<T, N> dummy_precision() { |
| return ceres::Jet<T, N>(1e-12); |
| } |
| |
| static inline Real epsilon() { |
| return Real(std::numeric_limits<T>::epsilon()); |
| } |
| |
| static inline int digits10() { return NumTraits<T>::digits10(); } |
| |
| enum { |
| IsComplex = 0, |
| IsInteger = 0, |
| IsSigned, |
| ReadCost = 1, |
| AddCost = 1, |
| // For Jet types, multiplication is more expensive than addition. |
| MulCost = 3, |
| HasFloatingPoint = 1, |
| RequireInitialization = 1 |
| }; |
| |
| template<bool Vectorized> |
| struct Div { |
| enum { |
| #if defined(EIGEN_VECTORIZE_AVX) |
| AVX = true, |
| #else |
| AVX = false, |
| #endif |
| |
| // Assuming that for Jets, division is as expensive as |
| // multiplication. |
| Cost = 3 |
| }; |
| }; |
| |
| static inline Real highest() { return Real(std::numeric_limits<T>::max()); } |
| static inline Real lowest() { return Real(-std::numeric_limits<T>::max()); } |
| }; |
| |
| #if EIGEN_VERSION_AT_LEAST(3, 3, 0) |
| // Specifying the return type of binary operations between Jets and scalar types |
| // allows you to perform matrix/array operations with Eigen matrices and arrays |
| // such as addition, subtraction, multiplication, and division where one Eigen |
| // matrix/array is of type Jet and the other is a scalar type. This improves |
| // performance by using the optimized scalar-to-Jet binary operations but |
| // is only available on Eigen versions >= 3.3 |
| template <typename BinaryOp, typename T, int N> |
| struct ScalarBinaryOpTraits<ceres::Jet<T, N>, T, BinaryOp> { |
| typedef ceres::Jet<T, N> ReturnType; |
| }; |
| template <typename BinaryOp, typename T, int N> |
| struct ScalarBinaryOpTraits<T, ceres::Jet<T, N>, BinaryOp> { |
| typedef ceres::Jet<T, N> ReturnType; |
| }; |
| #endif // EIGEN_VERSION_AT_LEAST(3, 3, 0) |
| |
| } // namespace Eigen |
| |
| #endif // CERES_PUBLIC_JET_H_ |