| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | // | 
 | // Tests the use of Cere's Jet type with the quaternions found in util/math/. In | 
 | // theory, the unittests for the quaternion class should be type parameterized | 
 | // to make for easier testing of instantiations of the quaternion class, but it | 
 | // is not so, and not obviously worth the work to make the switch at this time. | 
 |  | 
 | #include "base/stringprintf.h" | 
 | #include "gtest/gtest.h" | 
 | #include "util/math/mathlimits.h" | 
 | #include "util/math/matrix3x3-inl.h" | 
 | #include "util/math/quaternion-inl.h" | 
 | #include "util/math/vector3-inl.h" | 
 | #include "ceres/test_util.h" | 
 | #include "ceres/jet.h" | 
 | #include "ceres/jet_traits.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // Use a 4-element derivative to simulate the case where each of the | 
 | // quaternion elements are derivative parameters. | 
 | typedef Jet<double, 4> J; | 
 |  | 
 | struct JetTraitsTest : public ::testing::Test { | 
 |  protected: | 
 |   JetTraitsTest() | 
 |       : a(J(1.1, 0), J(2.1, 1), J(3.1, 2), J(4.1, 3)), | 
 |         b(J(0.1, 0), J(1.1, 1), J(2.1, 2), J(5.0, 3)), | 
 |         double_a(a[0].a, a[1].a, a[2].a, a[3].a), | 
 |         double_b(b[0].a, b[1].a, b[2].a, b[3].a) { | 
 |     // The quaternions should be valid rotations, so normalize them. | 
 |     a.Normalize(); | 
 |     b.Normalize(); | 
 |     double_a.Normalize(); | 
 |     double_b.Normalize(); | 
 |   } | 
 |  | 
 |   virtual ~JetTraitsTest() {} | 
 |  | 
 |   // A couple of arbitrary normalized quaternions. | 
 |   Quaternion<J> a, b; | 
 |  | 
 |   // The equivalent of a, b but in scalar form. | 
 |   Quaternion<double> double_a, double_b; | 
 | }; | 
 |  | 
 | // Compare scalar multiplication to jet multiplication. Ignores derivatives. | 
 | TEST_F(JetTraitsTest, QuaternionScalarMultiplicationWorks) { | 
 |   Quaternion<J> c = a * b; | 
 |   Quaternion<double> double_c = double_a * double_b; | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     EXPECT_EQ(double_c[i], c[i].a); | 
 |   } | 
 | } | 
 |  | 
 | // Compare scalar slerp to jet slerp. Ignores derivatives. | 
 | TEST_F(JetTraitsTest, QuaternionScalarSlerpWorks) { | 
 |   const J fraction(0.1); | 
 |   Quaternion<J> c = Quaternion<J>::Slerp(a, b, fraction); | 
 |   Quaternion<double> double_c = | 
 |       Quaternion<double>::Slerp(double_a, double_b, fraction.a); | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     EXPECT_EQ(double_c[i], c[i].a); | 
 |   } | 
 | } | 
 |  | 
 | // On a 32-bit optimized build, the mismatch is about 1.4e-14. | 
 | double const kTolerance = 1e-13; | 
 |  | 
 | void ExpectJetsClose(const J &x, const J &y) { | 
 |   ExpectClose(x.a, y.a, kTolerance); | 
 |   ExpectClose(x.v[0], y.v[0], kTolerance); | 
 |   ExpectClose(x.v[1], y.v[1], kTolerance); | 
 |   ExpectClose(x.v[2], y.v[2], kTolerance); | 
 |   ExpectClose(x.v[3], y.v[3], kTolerance); | 
 | } | 
 |  | 
 | void ExpectQuaternionsClose(const Quaternion<J>& x, const Quaternion<J>& y) { | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     ExpectJetsClose(x[i], y[i]); | 
 |   } | 
 | } | 
 |  | 
 | // Compare jet slurp to jet slerp using identies, checking derivatives. | 
 | TEST_F(JetTraitsTest, CheckSlerpIdentitiesWithNontrivialDerivatives) { | 
 |   // Do a slerp to 0.75 directly. | 
 |   Quaternion<J> direct = Quaternion<J>::Slerp(a, b, J(0.75)); | 
 |  | 
 |   // Now go part way twice, in theory ending at the same place. | 
 |   Quaternion<J> intermediate = Quaternion<J>::Slerp(a, b, J(0.5)); | 
 |   Quaternion<J> indirect = Quaternion<J>::Slerp(intermediate, b, J(0.5)); | 
 |  | 
 |   // Check that the destination is the same, including derivatives. | 
 |   ExpectQuaternionsClose(direct, indirect); | 
 | } | 
 |  | 
 | TEST_F(JetTraitsTest, CheckAxisAngleIsInvertibleWithNontrivialDerivatives) { | 
 |   Vector3<J> axis; | 
 |   J angle; | 
 |   a.GetAxisAngle(&axis, &angle); | 
 |   b.SetFromAxisAngle(axis, angle); | 
 |  | 
 |   ExpectQuaternionsClose(a, b); | 
 | } | 
 |  | 
 | TEST_F(JetTraitsTest, | 
 |        CheckRotationMatrixIsInvertibleWithNontrivialDerivatives) { | 
 |   Vector3<J> axis; | 
 |   J angle; | 
 |   Matrix3x3<J> R; | 
 |   a.ToRotationMatrix(&R); | 
 |   b.SetFromRotationMatrix(R); | 
 |  | 
 |   ExpectQuaternionsClose(a, b); | 
 | } | 
 |  | 
 | // This doesn't check correctnenss, only that the instantiation compiles. | 
 | TEST_F(JetTraitsTest, CheckRotationBetweenIsCompilable) { | 
 |   // Get two arbitrary vectors x and y. | 
 |   Vector3<J> x, y; | 
 |   J ignored_angle; | 
 |   a.GetAxisAngle(&x, &ignored_angle); | 
 |   b.GetAxisAngle(&y, &ignored_angle); | 
 |  | 
 |   Quaternion<J> between_x_and_y = Quaternion<J>::RotationBetween(x, y); | 
 |  | 
 |   // Prevent optimizing this away. | 
 |   EXPECT_NE(between_x_and_y[0].a, 0.0); | 
 | } | 
 |  | 
 | TEST_F(JetTraitsTest, CheckRotatedWorksAsExpected) { | 
 |   // Get two arbitrary vectors x and y. | 
 |   Vector3<J> x; | 
 |   J ignored_angle; | 
 |   a.GetAxisAngle(&x, &ignored_angle); | 
 |  | 
 |   // Rotate via a quaternion. | 
 |   Vector3<J> y = b.Rotated(x); | 
 |  | 
 |   // Rotate via a rotation matrix. | 
 |   Matrix3x3<J> R; | 
 |   b.ToRotationMatrix(&R); | 
 |   Vector3<J> yp = R * x; | 
 |  | 
 |   ExpectJetsClose(yp[0], y[0]); | 
 |   ExpectJetsClose(yp[1], y[1]); | 
 |   ExpectJetsClose(yp[2], y[2]); | 
 | } | 
 |  | 
 | TEST_F(JetTraitsTest, CheckRotatedWorksAsExpectedWithDoubles) { | 
 |   // Get two arbitrary vectors x and y. | 
 |   Vector3<double> x; | 
 |   double ignored_angle; | 
 |   double_a.GetAxisAngle(&x, &ignored_angle); | 
 |  | 
 |   // Rotate via a quaternion. | 
 |   Vector3<double> y = double_b.Rotated(x); | 
 |  | 
 |   // Rotate via a rotation matrix. | 
 |   Matrix3x3<double> R; | 
 |   double_b.ToRotationMatrix(&R); | 
 |   Vector3<double> yp = R * x; | 
 |  | 
 |   ExpectClose(yp[0], y[0], kTolerance); | 
 |   ExpectClose(yp[1], y[1], kTolerance); | 
 |   ExpectClose(yp[2], y[2], kTolerance); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |