| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| // |
| |
| #ifndef CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ |
| #define CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ |
| |
| #include "ceres/internal/config.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| #include <memory> |
| |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/cuda_buffer.h" |
| #include "ceres/cuda_sparse_matrix.h" |
| #include "ceres/cuda_streamed_buffer.h" |
| |
| namespace ceres::internal { |
| // We use cuSPARSE library for SpMV operations. However, it does not support |
| // block-sparse format with varying size of the blocks. Thus, we perform the |
| // following operations in order to compute products of block-sparse matrices |
| // and dense vectors on gpu: |
| // - Once per block-sparse structure update: |
| // - Compute CRS structure from block-sparse structure |
| // - Compute permutation from block-sparse values to CRS values |
| // - Once per block-sparse values update: |
| // - Update values in CRS matrix with values of block-sparse matrix |
| // |
| // Since there are no constraints on positions of cells in value array of |
| // block-sparse matrix, a permutation from block-sparse values to CRS |
| // values is stored explicitly. |
| // |
| // Example: given matrix with the following block-structure |
| // [ 1 2 | | 6 7 ] |
| // [ 3 4 | | 8 9 ] |
| // [-----+-+-----] |
| // [ |5| ] |
| // with values stored as values_block_sparse = [1, 2, 3, 4, 5, 6, 7, 8, 9], |
| // permutation from block-sparse to CRS is p = [0, 1, 4, 5, 8, 2, 3, 6, 7]; |
| // and i-th block-sparse value has index p[i] in CRS values array |
| // |
| // This allows to avoid storing both CRS and block-sparse values in GPU memory. |
| // Instead, block-sparse values are transferred to gpu memory as a disjoint set |
| // of small continuous segments with simultaneous permutation of the values into |
| // correct order |
| class CERES_NO_EXPORT CudaBlockSparseCRSView { |
| public: |
| // Initializes internal CRS matrix and permutation from block-sparse to CRS |
| // values. The following objects are stored in gpu memory for the whole |
| // lifetime of the object |
| // - crs_matrix_: CRS matrix |
| // - permutation_: permutation from block-sparse to CRS value order |
| // (num_nonzeros integer values) |
| // - streamed_buffer_: helper for value updating |
| // The following objects are created temporarily during construction: |
| // - CudaBlockSparseStructure: block-sparse structure of block-sparse matrix |
| // - num_rows integer values: row to row-block map |
| // If copy_values flag is set to false, only structure of block-sparse matrix |
| // bsm is captured, and values are left uninitialized |
| CudaBlockSparseCRSView(const BlockSparseMatrix& bsm, ContextImpl* context); |
| |
| const CudaSparseMatrix* crs_matrix() const { return crs_matrix_.get(); } |
| CudaSparseMatrix* mutable_crs_matrix() { return crs_matrix_.get(); } |
| |
| // Update values of crs_matrix_ using values of block-sparse matrix. |
| // Assumes that bsm has the same block-sparse structure as matrix that was |
| // used for construction. |
| void UpdateValues(const BlockSparseMatrix& bsm); |
| |
| private: |
| // Value permutation kernel performs a single element-wise operation per |
| // thread, thus performing permutation in blocks of 8 megabytes of |
| // block-sparse values seems reasonable |
| static constexpr int kMaxTemporaryArraySize = 1 * 1024 * 1024; |
| std::unique_ptr<CudaSparseMatrix> crs_matrix_; |
| // Permutation from block-sparse to CRS value order. |
| // permutation_[i] = index of i-th block-sparse value in CRS values |
| CudaBuffer<int> permutation_; |
| CudaStreamedBuffer<double> streamed_buffer_; |
| }; |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |
| #endif // CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ |