| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| |
| #include "ceres/cuda_block_structure.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| namespace ceres::internal { |
| namespace { |
| // Dimension of a sorted array of blocks |
| inline int Dimension(const std::vector<Block>& blocks) { |
| if (blocks.empty()) { |
| return 0; |
| } |
| const auto& last = blocks.back(); |
| return last.size + last.position; |
| } |
| } // namespace |
| |
| CudaBlockSparseStructure::CudaBlockSparseStructure( |
| const CompressedRowBlockStructure& block_structure, ContextImpl* context) |
| : row_block_offsets_(context), |
| cells_(context), |
| row_blocks_(context), |
| col_blocks_(context) { |
| // Row blocks extracted from CompressedRowBlockStructure::rows |
| std::vector<Block> row_blocks; |
| // Column blocks can be reused as-is |
| const auto& col_blocks = block_structure.cols; |
| |
| // Row block offset is an index of the first cell corresponding to row block |
| std::vector<int> row_block_offsets; |
| // Flat array of all cells from all row-blocks |
| std::vector<Cell> cells; |
| |
| num_row_blocks_ = block_structure.rows.size(); |
| num_col_blocks_ = col_blocks.size(); |
| |
| row_blocks.reserve(num_row_blocks_); |
| row_block_offsets.reserve(num_row_blocks_ + 1); |
| num_nonzeros_ = 0; |
| num_cells_ = 0; |
| for (const auto& r : block_structure.rows) { |
| const int row_block_size = r.block.size; |
| row_blocks.emplace_back(r.block); |
| row_block_offsets.push_back(num_cells_); |
| for (const auto& c : r.cells) { |
| cells.emplace_back(c); |
| const int col_block_size = col_blocks[c.block_id].size; |
| num_nonzeros_ += col_block_size * row_block_size; |
| ++num_cells_; |
| } |
| } |
| row_block_offsets.push_back(num_cells_); |
| |
| num_rows_ = Dimension(row_blocks); |
| num_cols_ = Dimension(col_blocks); |
| |
| if (VLOG_IS_ON(3)) { |
| const size_t row_block_offsets_size = |
| row_block_offsets.size() * sizeof(int); |
| const size_t cells_size = cells.size() * sizeof(Cell); |
| const size_t row_blocks_size = row_blocks.size() * sizeof(Block); |
| const size_t col_blocks_size = col_blocks.size() * sizeof(Block); |
| const size_t total_size = |
| row_block_offsets_size + cells_size + col_blocks_size + row_blocks_size; |
| VLOG(3) << "\nCudaBlockSparseStructure:\n" |
| "\tRow block offsets: " |
| << row_block_offsets_size |
| << " bytes\n" |
| "\tColumn blocks: " |
| << col_blocks_size |
| << " bytes\n" |
| "\tRow blocks: " |
| << row_blocks_size |
| << " bytes\n" |
| "\tCells: " |
| << cells_size |
| << " bytes\n" |
| "\tTotal: " |
| << total_size << " bytes of GPU memory"; |
| } |
| |
| row_block_offsets_.CopyFromCpuVector(row_block_offsets); |
| cells_.CopyFromCpuVector(cells); |
| row_blocks_.CopyFromCpuVector(row_blocks); |
| col_blocks_.CopyFromCpuVector(col_blocks); |
| } |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |