| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) |
| |
| //#include "ceres/cuda_kernels.h" |
| |
| #include <thrust/execution_policy.h> |
| #include <thrust/scan.h> |
| |
| #include "block_structure.h" |
| #include "cuda_runtime.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // As the CUDA Toolkit documentation says, "although arbitrary in this case, is |
| // a common choice". This is determined by the warp size, max block size, and |
| // multiprocessor sizes of recent GPUs. For complex kernels with significant |
| // register usage and unusual memory patterns, the occupancy calculator API |
| // might provide better performance. See "Occupancy Calculator" under the CUDA |
| // toolkit documentation. |
| constexpr int kCudaBlockSize = 256; |
| inline int NumBlocks(int size) { |
| return (size + kCudaBlockSize - 1) / kCudaBlockSize; |
| } |
| |
| template <typename SrcType, typename DstType> |
| __global__ void TypeConversionKernel(const SrcType* __restrict__ input, |
| DstType* __restrict__ output, |
| const int size) { |
| const int i = blockIdx.x * blockDim.x + threadIdx.x; |
| if (i < size) { |
| output[i] = static_cast<DstType>(input[i]); |
| } |
| } |
| |
| void CudaFP64ToFP32(const double* input, |
| float* output, |
| const int size, |
| cudaStream_t stream) { |
| const int num_blocks = NumBlocks(size); |
| TypeConversionKernel<double, float> |
| <<<num_blocks, kCudaBlockSize, 0, stream>>>(input, output, size); |
| } |
| |
| void CudaFP32ToFP64(const float* input, |
| double* output, |
| const int size, |
| cudaStream_t stream) { |
| const int num_blocks = NumBlocks(size); |
| TypeConversionKernel<float, double> |
| <<<num_blocks, kCudaBlockSize, 0, stream>>>(input, output, size); |
| } |
| |
| template <typename T> |
| __global__ void SetZeroKernel(T* __restrict__ output, const int size) { |
| const int i = blockIdx.x * blockDim.x + threadIdx.x; |
| if (i < size) { |
| output[i] = T(0.0); |
| } |
| } |
| |
| void CudaSetZeroFP32(float* output, const int size, cudaStream_t stream) { |
| const int num_blocks = NumBlocks(size); |
| SetZeroKernel<float><<<num_blocks, kCudaBlockSize, 0, stream>>>(output, size); |
| } |
| |
| void CudaSetZeroFP64(double* output, const int size, cudaStream_t stream) { |
| const int num_blocks = NumBlocks(size); |
| SetZeroKernel<double> |
| <<<num_blocks, kCudaBlockSize, 0, stream>>>(output, size); |
| } |
| |
| template <typename SrcType, typename DstType> |
| __global__ void XPlusEqualsYKernel(DstType* __restrict__ x, |
| const SrcType* __restrict__ y, |
| const int size) { |
| const int i = blockIdx.x * blockDim.x + threadIdx.x; |
| if (i < size) { |
| x[i] = x[i] + DstType(y[i]); |
| } |
| } |
| |
| void CudaDsxpy(double* x, float* y, const int size, cudaStream_t stream) { |
| const int num_blocks = NumBlocks(size); |
| XPlusEqualsYKernel<float, double> |
| <<<num_blocks, kCudaBlockSize, 0, stream>>>(x, y, size); |
| } |
| |
| __global__ void CudaDtDxpyKernel(double* __restrict__ y, |
| const double* D, |
| const double* __restrict__ x, |
| const int size) { |
| const int i = blockIdx.x * blockDim.x + threadIdx.x; |
| if (i < size) { |
| y[i] = y[i] + D[i] * D[i] * x[i]; |
| } |
| } |
| |
| void CudaDtDxpy(double* y, |
| const double* D, |
| const double* x, |
| const int size, |
| cudaStream_t stream) { |
| const int num_blocks = NumBlocks(size); |
| CudaDtDxpyKernel<<<num_blocks, kCudaBlockSize, 0, stream>>>(y, D, x, size); |
| } |
| |
| // Fill row block id and nnz for each row using block-sparse structure |
| // represented by a set of flat arrays. |
| // Inputs: |
| // - num_row_blocks: number of row-blocks in block-sparse structure |
| // - row_block_offsets: index of the first cell of the row-block; size: |
| // num_row_blocks + 1 |
| // - cells: cells of block-sparse structure as a continuous array |
| // - row_blocks: row blocks of block-sparse structure stored sequentially |
| // - col_blocks: column blocks of block-sparse structure stored sequentially |
| // Outputs: |
| // - rows: rows[i + 1] will contain number of non-zeros in i-th row, rows[0] |
| // will be set to 0; rows are filled with a shift by one element in order |
| // to obtain row-index array of CRS matrix with a inclusive scan afterwards |
| // - row_block_ids: row_block_ids[i] will be set to index of row-block that |
| // contains i-th row. |
| // Computation is perform row-block-wise |
| __global__ void RowBlockIdAndNNZ(int num_row_blocks, |
| const int* __restrict__ row_block_offsets, |
| const Cell* __restrict__ cells, |
| const Block* __restrict__ row_blocks, |
| const Block* __restrict__ col_blocks, |
| int* __restrict__ rows, |
| int* __restrict__ row_block_ids) { |
| const int row_block_id = blockIdx.x * blockDim.x + threadIdx.x; |
| if (row_block_id > num_row_blocks) { |
| // No synchronization is performed in this kernel, thus it is safe to return |
| return; |
| } |
| if (row_block_id == num_row_blocks) { |
| // one extra thread sets the first element |
| rows[0] = 0; |
| return; |
| } |
| const auto& row_block = row_blocks[row_block_id]; |
| int row_nnz = 0; |
| const auto first_cell = cells + row_block_offsets[row_block_id]; |
| const auto last_cell = cells + row_block_offsets[row_block_id + 1]; |
| for (auto cell = first_cell; cell < last_cell; ++cell) { |
| row_nnz += col_blocks[cell->block_id].size; |
| } |
| const int first_row = row_block.position; |
| const int last_row = first_row + row_block.size; |
| for (int i = first_row; i < last_row; ++i) { |
| rows[i + 1] = row_nnz; |
| row_block_ids[i] = row_block_id; |
| } |
| } |
| |
| // Row-wise creation of CRS structure |
| // Inputs: |
| // - num_rows: number of rows in matrix |
| // - row_block_offsets: index of the first cell of the row-block; size: |
| // num_row_blocks + 1 |
| // - cells: cells of block-sparse structure as a continuous array |
| // - row_blocks: row blocks of block-sparse structure stored sequentially |
| // - col_blocks: column blocks of block-sparse structure stored sequentially |
| // - row_block_ids: index of row-block that corresponds to row |
| // - rows: row-index array of CRS structure |
| // Outputs: |
| // - cols: column-index array of CRS structure |
| // - permutation: permutation from block-sparse to crs order |
| // Computaion is perform row-wise |
| __global__ void ComputeColumnsAndPermutation( |
| int num_rows, |
| const int* __restrict__ row_block_offsets, |
| const Cell* __restrict__ cells, |
| const Block* __restrict__ row_blocks, |
| const Block* __restrict__ col_blocks, |
| const int* __restrict__ row_block_ids, |
| const int* __restrict__ rows, |
| int* __restrict__ cols, |
| int* __restrict__ permutation) { |
| const int row = blockIdx.x * blockDim.x + threadIdx.x; |
| if (row >= num_rows) { |
| // No synchronization is performed in this kernel, thus it is safe to return |
| return; |
| } |
| const int row_block_id = row_block_ids[row]; |
| // zero-based index of row in row-block |
| const int row_in_block = row - row_blocks[row_block_id].position; |
| // position in crs matrix |
| int crs_position = rows[row]; |
| const auto first_cell = cells + row_block_offsets[row_block_id]; |
| const auto last_cell = cells + row_block_offsets[row_block_id + 1]; |
| // For reach cell of row-block only current row is being filled |
| for (auto cell = first_cell; cell < last_cell; ++cell) { |
| const auto& col_block = col_blocks[cell->block_id]; |
| const int col_block_size = col_block.size; |
| int column_idx = col_block.position; |
| int bs_position = cell->position + row_in_block * col_block_size; |
| // Fill permutation and column indices for each element of row_in_block |
| // row of current cell |
| for (int i = 0; i < col_block_size; ++i, ++crs_position) { |
| permutation[bs_position++] = crs_position; |
| cols[crs_position] = column_idx++; |
| } |
| } |
| } |
| |
| void FillCRSStructure(const int num_row_blocks, |
| const int num_rows, |
| const int* row_block_offsets, |
| const Cell* cells, |
| const Block* row_blocks, |
| const Block* col_blocks, |
| int* rows, |
| int* cols, |
| int* row_block_ids, |
| int* permutation, |
| cudaStream_t stream) { |
| // Set number of non-zeros per row in rows array and row to row-block map in |
| // row_block_ids array |
| const int num_blocks_blockwise = NumBlocks(num_row_blocks + 1); |
| RowBlockIdAndNNZ<<<num_blocks_blockwise, kCudaBlockSize, 0, stream>>>( |
| num_row_blocks, |
| row_block_offsets, |
| cells, |
| row_blocks, |
| col_blocks, |
| rows, |
| row_block_ids); |
| // Finalize row-index array of CRS strucure by computing prefix sum |
| thrust::inclusive_scan( |
| thrust::cuda::par.on(stream), rows, rows + num_rows + 1, rows); |
| |
| // Fill cols array of CRS structure and permutation from block-sparse to CRS |
| const int num_blocks_rowwise = NumBlocks(num_rows); |
| ComputeColumnsAndPermutation<<<num_blocks_rowwise, |
| kCudaBlockSize, |
| 0, |
| stream>>>(num_rows, |
| row_block_offsets, |
| cells, |
| row_blocks, |
| col_blocks, |
| row_block_ids, |
| rows, |
| cols, |
| permutation); |
| } |
| |
| // Updates values of CRS matrix with a continuous block of values of |
| // block-sparse matrix. With permutation[i] being an index of i-th value of |
| // block-sparse matrix in values of CRS matrix updating values is quite |
| // efficient when performed element-wise (reads of permutation and values arrays |
| // are coalesced when offset is divisable by 16) |
| __global__ void PermuteValuesKernel(const int offset, |
| const int num_values, |
| const int* permutation, |
| const double* block_sparse_values, |
| double* crs_values) { |
| const int value_id = blockIdx.x * blockDim.x + threadIdx.x; |
| if (value_id < num_values) { |
| crs_values[permutation[offset + value_id]] = block_sparse_values[value_id]; |
| } |
| } |
| |
| void PermuteValues(const int offset, |
| const int num_values, |
| const int* permutation, |
| const double* block_sparse_values, |
| double* crs_values, |
| cudaStream_t stream) { |
| const int num_blocks = NumBlocks(num_values); |
| PermuteValuesKernel<<<num_blocks, kCudaBlockSize, 0, stream>>>( |
| offset, num_values, permutation, block_sparse_values, crs_values); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |