blob: 61f945a80858d72bfa24f3bfb5ab4123eff2761d [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: joydeepb@cs.utexas.edu (Joydeep Biswas)
#ifndef CERES_INTERNAL_CUDA_KERNELS_H_
#define CERES_INTERNAL_CUDA_KERNELS_H_
#include "ceres/internal/config.h"
#ifndef CERES_NO_CUDA
#include "cuda_runtime.h"
namespace ceres {
namespace internal {
class Block;
class Cell;
// Convert an array of double (FP64) values to float (FP32). Both arrays must
// already be on GPU memory.
void CudaFP64ToFP32(const double* input,
float* output,
const int size,
cudaStream_t stream);
// Convert an array of float (FP32) values to double (FP64). Both arrays must
// already be on GPU memory.
void CudaFP32ToFP64(const float* input,
double* output,
const int size,
cudaStream_t stream);
// Set all elements of the array to the FP32 value 0. The array must be in GPU
// memory.
void CudaSetZeroFP32(float* output, const int size, cudaStream_t stream);
// Set all elements of the array to the FP64 value 0. The array must be in GPU
// memory.
void CudaSetZeroFP64(double* output, const int size, cudaStream_t stream);
// Compute x = x + double(y). Input array is float (FP32), output array is
// double (FP64). Both arrays must already be on GPU memory.
void CudaDsxpy(double* x, float* y, const int size, cudaStream_t stream);
// Compute y[i] = y[i] + d[i]^2 x[i]. All arrays must already be on GPU memory.
void CudaDtDxpy(double* y,
const double* D,
const double* x,
const int size,
cudaStream_t stream);
// Compute structure of CRS matrix and permutation of values using block-sparse
// structure and temporary array row_block_ids. Array row_block_ids of size
// num_rows will be filled with indices of row-blocks corresponding to rows of
// CRS matrix. Arrays corresponding to CRS matrix, permutation and row_block_ids
// arrays are to be allocated by caller
void FillCRSStructure(const int num_row_blocks,
const int num_rows,
const int* row_block_offsets,
const Cell* cells,
const Block* row_blocks,
const Block* col_blocks,
int* rows,
int* cols,
int* row_block_ids,
int* permutation,
cudaStream_t stream);
// Permute block of block-sparse values using permutation
// Pointer block_sparse_values corresponds to a block of num_values values from
// block-sparse matrix at the offset from begining. Pointer output corresponds
// to values of CRS matrix. Array permutation stores permutation from
// block-sparse to CRS matrix with permutation[i] being an index of i-th value
// of block-sparse matrix in values of CRS matrix
void PermuteValues(const int offset,
const int num_values,
const int* permutation,
const double* block_sparse_values,
double* crs_values,
cudaStream_t stream);
} // namespace internal
} // namespace ceres
#endif // CERES_NO_CUDA
#endif // CERES_INTERNAL_CUDA_KERNELS_H_