blob: 036c73938498ccddb9c7b1a5c081d3bcc7f58013 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/line_search.h"
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <map>
#include <memory>
#include <ostream> // NOLINT
#include <string>
#include <vector>
#include "ceres/evaluator.h"
#include "ceres/function_sample.h"
#include "ceres/internal/eigen.h"
#include "ceres/map_util.h"
#include "ceres/polynomial.h"
#include "ceres/stringprintf.h"
#include "ceres/wall_time.h"
#include "glog/logging.h"
namespace ceres::internal {
namespace {
// Precision used for floating point values in error message output.
const int kErrorMessageNumericPrecision = 8;
} // namespace
std::ostream& operator<<(std::ostream& os, const FunctionSample& sample);
// Convenience stream operator for pushing FunctionSamples into log messages.
std::ostream& operator<<(std::ostream& os, const FunctionSample& sample) {
os << sample.ToDebugString();
return os;
}
LineSearch::~LineSearch() = default;
LineSearch::LineSearch(const LineSearch::Options& options)
: options_(options) {}
std::unique_ptr<LineSearch> LineSearch::Create(
const LineSearchType line_search_type,
const LineSearch::Options& options,
std::string* error) {
switch (line_search_type) {
case ceres::ARMIJO:
return std::make_unique<ArmijoLineSearch>(options);
case ceres::WOLFE:
return std::make_unique<WolfeLineSearch>(options);
default:
*error = std::string("Invalid line search algorithm type: ") +
LineSearchTypeToString(line_search_type) +
std::string(", unable to create line search.");
}
return nullptr;
}
LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
: evaluator_(evaluator),
position_(evaluator->NumParameters()),
direction_(evaluator->NumEffectiveParameters()),
scaled_direction_(evaluator->NumEffectiveParameters()),
initial_evaluator_residual_time_in_seconds(0.0),
initial_evaluator_jacobian_time_in_seconds(0.0) {}
void LineSearchFunction::Init(const Vector& position, const Vector& direction) {
position_ = position;
direction_ = direction;
}
void LineSearchFunction::Evaluate(const double x,
const bool evaluate_gradient,
FunctionSample* output) {
output->x = x;
output->vector_x_is_valid = false;
output->value_is_valid = false;
output->gradient_is_valid = false;
output->vector_gradient_is_valid = false;
scaled_direction_ = output->x * direction_;
output->vector_x.resize(position_.rows(), 1);
if (!evaluator_->Plus(position_.data(),
scaled_direction_.data(),
output->vector_x.data())) {
return;
}
output->vector_x_is_valid = true;
double* gradient = nullptr;
if (evaluate_gradient) {
output->vector_gradient.resize(direction_.rows(), 1);
gradient = output->vector_gradient.data();
}
const bool eval_status = evaluator_->Evaluate(
output->vector_x.data(), &(output->value), nullptr, gradient, nullptr);
if (!eval_status || !std::isfinite(output->value)) {
return;
}
output->value_is_valid = true;
if (!evaluate_gradient) {
return;
}
output->gradient = direction_.dot(output->vector_gradient);
if (!std::isfinite(output->gradient)) {
return;
}
output->gradient_is_valid = true;
output->vector_gradient_is_valid = true;
}
double LineSearchFunction::DirectionInfinityNorm() const {
return direction_.lpNorm<Eigen::Infinity>();
}
void LineSearchFunction::ResetTimeStatistics() {
const std::map<std::string, CallStatistics> evaluator_statistics =
evaluator_->Statistics();
initial_evaluator_residual_time_in_seconds =
FindWithDefault(
evaluator_statistics, "Evaluator::Residual", CallStatistics())
.time;
initial_evaluator_jacobian_time_in_seconds =
FindWithDefault(
evaluator_statistics, "Evaluator::Jacobian", CallStatistics())
.time;
}
void LineSearchFunction::TimeStatistics(
double* cost_evaluation_time_in_seconds,
double* gradient_evaluation_time_in_seconds) const {
const std::map<std::string, CallStatistics> evaluator_time_statistics =
evaluator_->Statistics();
*cost_evaluation_time_in_seconds =
FindWithDefault(
evaluator_time_statistics, "Evaluator::Residual", CallStatistics())
.time -
initial_evaluator_residual_time_in_seconds;
// Strictly speaking this will slightly underestimate the time spent
// evaluating the gradient of the line search univariate cost function as it
// does not count the time spent performing the dot product with the direction
// vector. However, this will typically be small by comparison, and also
// allows direct subtraction of the timing information from the totals for
// the evaluator returned in the solver summary.
*gradient_evaluation_time_in_seconds =
FindWithDefault(
evaluator_time_statistics, "Evaluator::Jacobian", CallStatistics())
.time -
initial_evaluator_jacobian_time_in_seconds;
}
void LineSearch::Search(double step_size_estimate,
double initial_cost,
double initial_gradient,
Summary* summary) const {
const double start_time = WallTimeInSeconds();
CHECK(summary != nullptr);
*summary = LineSearch::Summary();
summary->cost_evaluation_time_in_seconds = 0.0;
summary->gradient_evaluation_time_in_seconds = 0.0;
summary->polynomial_minimization_time_in_seconds = 0.0;
options().function->ResetTimeStatistics();
this->DoSearch(step_size_estimate, initial_cost, initial_gradient, summary);
options().function->TimeStatistics(
&summary->cost_evaluation_time_in_seconds,
&summary->gradient_evaluation_time_in_seconds);
summary->total_time_in_seconds = WallTimeInSeconds() - start_time;
}
// Returns step_size \in [min_step_size, max_step_size] which minimizes the
// polynomial of degree defined by interpolation_type which interpolates all
// of the provided samples with valid values.
double LineSearch::InterpolatingPolynomialMinimizingStepSize(
const LineSearchInterpolationType& interpolation_type,
const FunctionSample& lowerbound,
const FunctionSample& previous,
const FunctionSample& current,
const double min_step_size,
const double max_step_size) const {
if (!current.value_is_valid ||
(interpolation_type == BISECTION && max_step_size <= current.x)) {
// Either: sample is invalid; or we are using BISECTION and contracting
// the step size.
return std::min(std::max(current.x * 0.5, min_step_size), max_step_size);
} else if (interpolation_type == BISECTION) {
CHECK_GT(max_step_size, current.x);
// We are expanding the search (during a Wolfe bracketing phase) using
// BISECTION interpolation. Using BISECTION when trying to expand is
// strictly speaking an oxymoron, but we define this to mean always taking
// the maximum step size so that the Armijo & Wolfe implementations are
// agnostic to the interpolation type.
return max_step_size;
}
// Only check if lower-bound is valid here, where it is required
// to avoid replicating current.value_is_valid == false
// behaviour in WolfeLineSearch.
CHECK(lowerbound.value_is_valid)
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
<< "Ceres bug: lower-bound sample for interpolation is invalid, "
<< "please contact the developers!, interpolation_type: "
<< LineSearchInterpolationTypeToString(interpolation_type)
<< ", lowerbound: " << lowerbound << ", previous: " << previous
<< ", current: " << current;
// Select step size by interpolating the function and gradient values
// and minimizing the corresponding polynomial.
std::vector<FunctionSample> samples;
samples.push_back(lowerbound);
if (interpolation_type == QUADRATIC) {
// Two point interpolation using function values and the
// gradient at the lower bound.
samples.emplace_back(current.x, current.value);
if (previous.value_is_valid) {
// Three point interpolation, using function values and the
// gradient at the lower bound.
samples.emplace_back(previous.x, previous.value);
}
} else if (interpolation_type == CUBIC) {
// Two point interpolation using the function values and the gradients.
samples.push_back(current);
if (previous.value_is_valid) {
// Three point interpolation using the function values and
// the gradients.
samples.push_back(previous);
}
} else {
LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
<< LineSearchInterpolationTypeToString(interpolation_type)
<< ", please contact the developers!";
}
double step_size = 0.0, unused_min_value = 0.0;
MinimizeInterpolatingPolynomial(
samples, min_step_size, max_step_size, &step_size, &unused_min_value);
return step_size;
}
ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
: LineSearch(options) {}
void ArmijoLineSearch::DoSearch(const double step_size_estimate,
const double initial_cost,
const double initial_gradient,
Summary* summary) const {
CHECK_GE(step_size_estimate, 0.0);
CHECK_GT(options().sufficient_decrease, 0.0);
CHECK_LT(options().sufficient_decrease, 1.0);
CHECK_GT(options().max_num_iterations, 0);
LineSearchFunction* function = options().function;
// Note initial_cost & initial_gradient are evaluated at step_size = 0,
// not step_size_estimate, which is our starting guess.
FunctionSample initial_position(0.0, initial_cost, initial_gradient);
initial_position.vector_x = function->position();
initial_position.vector_x_is_valid = true;
const double descent_direction_max_norm = function->DirectionInfinityNorm();
FunctionSample previous;
FunctionSample current;
// As the Armijo line search algorithm always uses the initial point, for
// which both the function value and derivative are known, when fitting a
// minimizing polynomial, we can fit up to a quadratic without requiring the
// gradient at the current query point.
const bool kEvaluateGradient = options().interpolation_type == CUBIC;
++summary->num_function_evaluations;
if (kEvaluateGradient) {
++summary->num_gradient_evaluations;
}
function->Evaluate(step_size_estimate, kEvaluateGradient, &current);
while (!current.value_is_valid ||
current.value > (initial_cost + options().sufficient_decrease *
initial_gradient * current.x)) {
// If current.value_is_valid is false, we treat it as if the cost at that
// point is not large enough to satisfy the sufficient decrease condition.
++summary->num_iterations;
if (summary->num_iterations >= options().max_num_iterations) {
summary->error = StringPrintf(
"Line search failed: Armijo failed to find a point "
"satisfying the sufficient decrease condition within "
"specified max_num_iterations: %d.",
options().max_num_iterations);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return;
}
const double polynomial_minimization_start_time = WallTimeInSeconds();
const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
options().interpolation_type,
initial_position,
previous,
current,
(options().max_step_contraction * current.x),
(options().min_step_contraction * current.x));
summary->polynomial_minimization_time_in_seconds +=
(WallTimeInSeconds() - polynomial_minimization_start_time);
if (step_size * descent_direction_max_norm < options().min_step_size) {
summary->error = StringPrintf(
"Line search failed: step_size too small: %.5e "
"with descent_direction_max_norm: %.5e.",
step_size,
descent_direction_max_norm);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return;
}
previous = current;
++summary->num_function_evaluations;
if (kEvaluateGradient) {
++summary->num_gradient_evaluations;
}
function->Evaluate(step_size, kEvaluateGradient, &current);
}
summary->optimal_point = current;
summary->success = true;
}
WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
: LineSearch(options) {}
void WolfeLineSearch::DoSearch(const double step_size_estimate,
const double initial_cost,
const double initial_gradient,
Summary* summary) const {
// All parameters should have been validated by the Solver, but as
// invalid values would produce crazy nonsense, hard check them here.
CHECK_GE(step_size_estimate, 0.0);
CHECK_GT(options().sufficient_decrease, 0.0);
CHECK_GT(options().sufficient_curvature_decrease,
options().sufficient_decrease);
CHECK_LT(options().sufficient_curvature_decrease, 1.0);
CHECK_GT(options().max_step_expansion, 1.0);
// Note initial_cost & initial_gradient are evaluated at step_size = 0,
// not step_size_estimate, which is our starting guess.
FunctionSample initial_position(0.0, initial_cost, initial_gradient);
initial_position.vector_x = options().function->position();
initial_position.vector_x_is_valid = true;
bool do_zoom_search = false;
// Important: The high/low in bracket_high & bracket_low refer to their
// _function_ values, not their step sizes i.e. it is _not_ required that
// bracket_low.x < bracket_high.x.
FunctionSample solution, bracket_low, bracket_high;
// Wolfe bracketing phase: Increases step_size until either it finds a point
// that satisfies the (strong) Wolfe conditions, or an interval that brackets
// step sizes which satisfy the conditions. From Nocedal & Wright [1] p61 the
// interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
// the strong Wolfe conditions if one of the following conditions are met:
//
// 1. step_size_{k} violates the sufficient decrease (Armijo) condition.
// 2. f(step_size_{k}) >= f(step_size_{k-1}).
// 3. f'(step_size_{k}) >= 0.
//
// Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
// this special case, step_size monotonically increases during bracketing.
if (!this->BracketingPhase(initial_position,
step_size_estimate,
&bracket_low,
&bracket_high,
&do_zoom_search,
summary)) {
// Failed to find either a valid point, a valid bracket satisfying the Wolfe
// conditions, or even a step size > minimum tolerance satisfying the Armijo
// condition.
return;
}
if (!do_zoom_search) {
// Either: Bracketing phase already found a point satisfying the strong
// Wolfe conditions, thus no Zoom required.
//
// Or: Bracketing failed to find a valid bracket or a point satisfying the
// strong Wolfe conditions within max_num_iterations, or whilst searching
// shrank the bracket width until it was below our minimum tolerance.
// As these are 'artificial' constraints, and we would otherwise fail to
// produce a valid point when ArmijoLineSearch would succeed, we return the
// point with the lowest cost found thus far which satisfies the Armijo
// condition (but not the Wolfe conditions).
summary->optimal_point = bracket_low;
summary->success = true;
return;
}
VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
<< "Starting line search zoom phase with bracket_low: " << bracket_low
<< ", bracket_high: " << bracket_high
<< ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
<< ", bracket abs delta cost: "
<< fabs(bracket_low.value - bracket_high.value);
// Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
// non-zero, finite width that should bracket step sizes which satisfy the
// (strong) Wolfe conditions (before finding a step size that satisfies the
// conditions). Zoom successively decreases the size of the interval until a
// step size which satisfies the Wolfe conditions is found. The interval is
// defined by bracket_low & bracket_high, which satisfy:
//
// 1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
// contains step sizes that satisfy the strong Wolfe conditions.
// 2. bracket_low.x is of all the step sizes evaluated *which satisfied the
// Armijo sufficient decrease condition*, the one which generated the
// smallest function value, i.e. bracket_low.value <
// f(all other steps satisfying Armijo).
// - Note that this does _not_ (necessarily) mean that initially
// bracket_low.value < bracket_high.value (although this is typical)
// e.g. when bracket_low = initial_position, and bracket_high is the
// first sample, and which does not satisfy the Armijo condition,
// but still has bracket_high.value < initial_position.value.
// 3. bracket_high is chosen after bracket_low, s.t.
// bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
if (!this->ZoomPhase(
initial_position, bracket_low, bracket_high, &solution, summary) &&
!solution.value_is_valid) {
// Failed to find a valid point (given the specified decrease parameters)
// within the specified bracket.
return;
}
// Ensure that if we ran out of iterations whilst zooming the bracket, or
// shrank the bracket width to < tolerance and failed to find a point which
// satisfies the strong Wolfe curvature condition, that we return the point
// amongst those found thus far, which minimizes f() and satisfies the Armijo
// condition.
if (!solution.value_is_valid || solution.value > bracket_low.value) {
summary->optimal_point = bracket_low;
} else {
summary->optimal_point = solution;
}
summary->success = true;
}
// Returns true if either:
//
// A termination condition satisfying the (strong) Wolfe bracketing conditions
// is found:
//
// - A valid point, defined as a bracket of zero width [zoom not required].
// - A valid bracket (of width > tolerance), [zoom required].
//
// Or, searching was stopped due to an 'artificial' constraint, i.e. not
// a condition imposed / required by the underlying algorithm, but instead an
// engineering / implementation consideration. But a step which exceeds the
// minimum step size, and satisfies the Armijo condition was still found,
// and should thus be used [zoom not required].
//
// Returns false if no step size > minimum step size was found which
// satisfies at least the Armijo condition.
bool WolfeLineSearch::BracketingPhase(const FunctionSample& initial_position,
const double step_size_estimate,
FunctionSample* bracket_low,
FunctionSample* bracket_high,
bool* do_zoom_search,
Summary* summary) const {
LineSearchFunction* function = options().function;
FunctionSample previous = initial_position;
FunctionSample current;
const double descent_direction_max_norm = function->DirectionInfinityNorm();
*do_zoom_search = false;
*bracket_low = initial_position;
// As we require the gradient to evaluate the Wolfe condition, we always
// calculate it together with the value, irrespective of the interpolation
// type. As opposed to only calculating the gradient after the Armijo
// condition is satisfied, as the computational saving from this approach
// would be slight (perhaps even negative due to the extra call). Also,
// always calculating the value & gradient together protects against us
// reporting invalid solutions if the cost function returns slightly different
// function values when evaluated with / without gradients (due to numerical
// issues).
++summary->num_function_evaluations;
++summary->num_gradient_evaluations;
const bool kEvaluateGradient = true;
function->Evaluate(step_size_estimate, kEvaluateGradient, &current);
while (true) {
++summary->num_iterations;
if (current.value_is_valid &&
(current.value > (initial_position.value +
options().sufficient_decrease *
initial_position.gradient * current.x) ||
(previous.value_is_valid && current.value > previous.value))) {
// Bracket found: current step size violates Armijo sufficient decrease
// condition, or has stepped past an inflection point of f() relative to
// previous step size.
*do_zoom_search = true;
*bracket_low = previous;
*bracket_high = current;
VLOG(3) << std::scientific
<< std::setprecision(kErrorMessageNumericPrecision)
<< "Bracket found: current step (" << current.x
<< ") violates Armijo sufficient condition, or has passed an "
<< "inflection point of f() based on value.";
break;
}
if (current.value_is_valid &&
fabs(current.gradient) <= -options().sufficient_curvature_decrease *
initial_position.gradient) {
// Current step size satisfies the strong Wolfe conditions, and is thus a
// valid termination point, therefore a Zoom not required.
*bracket_low = current;
*bracket_high = current;
VLOG(3) << std::scientific
<< std::setprecision(kErrorMessageNumericPrecision)
<< "Bracketing phase found step size: " << current.x
<< ", satisfying strong Wolfe conditions, initial_position: "
<< initial_position << ", current: " << current;
break;
} else if (current.value_is_valid && current.gradient >= 0) {
// Bracket found: current step size has stepped past an inflection point
// of f(), but Armijo sufficient decrease is still satisfied and
// f(current) is our best minimum thus far. Remember step size
// monotonically increases, thus previous_step_size < current_step_size
// even though f(previous) > f(current).
*do_zoom_search = true;
// Note inverse ordering from first bracket case.
*bracket_low = current;
*bracket_high = previous;
VLOG(3) << "Bracket found: current step (" << current.x
<< ") satisfies Armijo, but has gradient >= 0, thus have passed "
<< "an inflection point of f().";
break;
} else if (current.value_is_valid &&
fabs(current.x - previous.x) * descent_direction_max_norm <
options().min_step_size) {
// We have shrunk the search bracket to a width less than our tolerance,
// and still not found either a point satisfying the strong Wolfe
// conditions, or a valid bracket containing such a point. Stop searching
// and set bracket_low to the size size amongst all those tested which
// minimizes f() and satisfies the Armijo condition.
if (!options().is_silent) {
LOG(WARNING) << "Line search failed: Wolfe bracketing phase shrank "
<< "bracket width: " << fabs(current.x - previous.x)
<< ", to < tolerance: " << options().min_step_size
<< ", with descent_direction_max_norm: "
<< descent_direction_max_norm << ", and failed to find "
<< "a point satisfying the strong Wolfe conditions or a "
<< "bracketing containing such a point. Accepting "
<< "point found satisfying Armijo condition only, to "
<< "allow continuation.";
}
*bracket_low = current;
break;
} else if (summary->num_iterations >= options().max_num_iterations) {
// Check num iterations bound here so that we always evaluate the
// max_num_iterations-th iteration against all conditions, and
// then perform no additional (unused) evaluations.
summary->error = StringPrintf(
"Line search failed: Wolfe bracketing phase failed to "
"find a point satisfying strong Wolfe conditions, or a "
"bracket containing such a point within specified "
"max_num_iterations: %d",
options().max_num_iterations);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
// Ensure that bracket_low is always set to the step size amongst all
// those tested which minimizes f() and satisfies the Armijo condition
// when we terminate due to the 'artificial' max_num_iterations condition.
*bracket_low =
current.value_is_valid && current.value < bracket_low->value
? current
: *bracket_low;
break;
}
// Either: f(current) is invalid; or, f(current) is valid, but does not
// satisfy the strong Wolfe conditions itself, or the conditions for
// being a boundary of a bracket.
// If f(current) is valid, (but meets no criteria) expand the search by
// increasing the step size. If f(current) is invalid, contract the step
// size.
//
// In Nocedal & Wright [1] (p60), the step-size can only increase in the
// bracketing phase: step_size_{k+1} \in [step_size_k, step_size_k *
// factor]. However this does not account for the function returning invalid
// values which we support, in which case we need to contract the step size
// whilst ensuring that we do not invert the bracket, i.e, we require that:
// step_size_{k-1} <= step_size_{k+1} < step_size_k.
const double min_step_size =
current.value_is_valid ? current.x : previous.x;
const double max_step_size =
current.value_is_valid ? (current.x * options().max_step_expansion)
: current.x;
// We are performing 2-point interpolation only here, but the API of
// InterpolatingPolynomialMinimizingStepSize() allows for up to
// 3-point interpolation, so pad call with a sample with an invalid
// value that will therefore be ignored.
const FunctionSample unused_previous;
DCHECK(!unused_previous.value_is_valid);
// Contracts step size if f(current) is not valid.
const double polynomial_minimization_start_time = WallTimeInSeconds();
const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
options().interpolation_type,
previous,
unused_previous,
current,
min_step_size,
max_step_size);
summary->polynomial_minimization_time_in_seconds +=
(WallTimeInSeconds() - polynomial_minimization_start_time);
if (step_size * descent_direction_max_norm < options().min_step_size) {
summary->error = StringPrintf(
"Line search failed: step_size too small: %.5e "
"with descent_direction_max_norm: %.5e",
step_size,
descent_direction_max_norm);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return false;
}
// Only advance the lower boundary (in x) of the bracket if f(current)
// is valid such that we can support contracting the step size when
// f(current) is invalid without risking inverting the bracket in x, i.e.
// prevent previous.x > current.x.
previous = current.value_is_valid ? current : previous;
++summary->num_function_evaluations;
++summary->num_gradient_evaluations;
function->Evaluate(step_size, kEvaluateGradient, &current);
}
// Ensure that even if a valid bracket was found, we will only mark a zoom
// as required if the bracket's width is greater than our minimum tolerance.
if (*do_zoom_search &&
fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm <
options().min_step_size) {
*do_zoom_search = false;
}
return true;
}
// Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
// on return false, if we stopped searching due to the 'artificial' condition of
// reaching max_num_iterations, solution is the step size amongst all those
// tested, which satisfied the Armijo decrease condition and minimized f().
bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
FunctionSample bracket_low,
FunctionSample bracket_high,
FunctionSample* solution,
Summary* summary) const {
LineSearchFunction* function = options().function;
CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
<< "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
<< "the developers!, initial_position: " << initial_position
<< ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high;
// We do not require bracket_high.gradient_is_valid as the gradient condition
// for a valid bracket is only dependent upon bracket_low.gradient, and
// in order to minimize jacobian evaluations, bracket_high.gradient may
// not have been calculated (if bracket_high.value does not satisfy the
// Armijo sufficient decrease condition and interpolation method does not
// require it).
//
// We also do not require that: bracket_low.value < bracket_high.value,
// although this is typical. This is to deal with the case when
// bracket_low = initial_position, bracket_high is the first sample,
// and bracket_high does not satisfy the Armijo condition, but still has
// bracket_high.value < initial_position.value.
CHECK(bracket_high.value_is_valid)
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
<< "Ceres bug: f_high input to Wolfe Zoom invalid, please "
<< "contact the developers!, initial_position: " << initial_position
<< ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high;
if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
// The third condition for a valid initial bracket:
//
// 3. bracket_high is chosen after bracket_low, s.t.
// bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
//
// is not satisfied. As this can happen when the users' cost function
// returns inconsistent gradient values relative to the function values,
// we do not CHECK_LT(), but we do stop processing and return an invalid
// value.
summary->error = StringPrintf(
"Line search failed: Wolfe zoom phase passed a bracket "
"which does not satisfy: bracket_low.gradient * "
"(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
"with initial_position: %s, bracket_low: %s, bracket_high:"
" %s, the most likely cause of which is the cost function "
"returning inconsistent gradient & function values.",
bracket_low.gradient * (bracket_high.x - bracket_low.x),
initial_position.ToDebugString().c_str(),
bracket_low.ToDebugString().c_str(),
bracket_high.ToDebugString().c_str());
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
solution->value_is_valid = false;
return false;
}
const int num_bracketing_iterations = summary->num_iterations;
const double descent_direction_max_norm = function->DirectionInfinityNorm();
while (true) {
// Set solution to bracket_low, as it is our best step size (smallest f())
// found thus far and satisfies the Armijo condition, even though it does
// not satisfy the Wolfe condition.
*solution = bracket_low;
if (summary->num_iterations >= options().max_num_iterations) {
summary->error = StringPrintf(
"Line search failed: Wolfe zoom phase failed to "
"find a point satisfying strong Wolfe conditions "
"within specified max_num_iterations: %d, "
"(num iterations taken for bracketing: %d).",
options().max_num_iterations,
num_bracketing_iterations);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return false;
}
if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm <
options().min_step_size) {
// Bracket width has been reduced below tolerance, and no point satisfying
// the strong Wolfe conditions has been found.
summary->error = StringPrintf(
"Line search failed: Wolfe zoom bracket width: %.5e "
"too small with descent_direction_max_norm: %.5e.",
fabs(bracket_high.x - bracket_low.x),
descent_direction_max_norm);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return false;
}
++summary->num_iterations;
// Polynomial interpolation requires inputs ordered according to step size,
// not f(step size).
const FunctionSample& lower_bound_step =
bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
const FunctionSample& upper_bound_step =
bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
// We are performing 2-point interpolation only here, but the API of
// InterpolatingPolynomialMinimizingStepSize() allows for up to
// 3-point interpolation, so pad call with a sample with an invalid
// value that will therefore be ignored.
const FunctionSample unused_previous;
DCHECK(!unused_previous.value_is_valid);
const double polynomial_minimization_start_time = WallTimeInSeconds();
const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
options().interpolation_type,
lower_bound_step,
unused_previous,
upper_bound_step,
lower_bound_step.x,
upper_bound_step.x);
summary->polynomial_minimization_time_in_seconds +=
(WallTimeInSeconds() - polynomial_minimization_start_time);
// No check on magnitude of step size being too small here as it is
// lower-bounded by the initial bracket start point, which was valid.
//
// As we require the gradient to evaluate the Wolfe condition, we always
// calculate it together with the value, irrespective of the interpolation
// type. As opposed to only calculating the gradient after the Armijo
// condition is satisfied, as the computational saving from this approach
// would be slight (perhaps even negative due to the extra call). Also,
// always calculating the value & gradient together protects against us
// reporting invalid solutions if the cost function returns slightly
// different function values when evaluated with / without gradients (due
// to numerical issues).
++summary->num_function_evaluations;
++summary->num_gradient_evaluations;
const bool kEvaluateGradient = true;
function->Evaluate(step_size, kEvaluateGradient, solution);
if (!solution->value_is_valid || !solution->gradient_is_valid) {
summary->error = StringPrintf(
"Line search failed: Wolfe Zoom phase found "
"step_size: %.5e, for which function is invalid, "
"between low_step: %.5e and high_step: %.5e "
"at which function is valid.",
solution->x,
bracket_low.x,
bracket_high.x);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return false;
}
VLOG(3) << "Zoom iteration: "
<< summary->num_iterations - num_bracketing_iterations
<< ", bracket_low: " << bracket_low
<< ", bracket_high: " << bracket_high
<< ", minimizing solution: " << *solution;
if ((solution->value > (initial_position.value +
options().sufficient_decrease *
initial_position.gradient * solution->x)) ||
(solution->value >= bracket_low.value)) {
// Armijo sufficient decrease not satisfied, or not better
// than current lowest sample, use as new upper bound.
bracket_high = *solution;
continue;
}
// Armijo sufficient decrease satisfied, check strong Wolfe condition.
if (fabs(solution->gradient) <=
-options().sufficient_curvature_decrease * initial_position.gradient) {
// Found a valid termination point satisfying strong Wolfe conditions.
VLOG(3) << std::scientific
<< std::setprecision(kErrorMessageNumericPrecision)
<< "Zoom phase found step size: " << solution->x
<< ", satisfying strong Wolfe conditions.";
break;
} else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
bracket_high = bracket_low;
}
bracket_low = *solution;
}
// Solution contains a valid point which satisfies the strong Wolfe
// conditions.
return true;
}
} // namespace ceres::internal