| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/line_search.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <iomanip> | 
 | #include <iostream>  // NOLINT | 
 |  | 
 | #include "ceres/evaluator.h" | 
 | #include "ceres/function_sample.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/map_util.h" | 
 | #include "ceres/polynomial.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/wall_time.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::map; | 
 | using std::ostream; | 
 | using std::string; | 
 | using std::vector; | 
 |  | 
 | namespace { | 
 | // Precision used for floating point values in error message output. | 
 | const int kErrorMessageNumericPrecision = 8; | 
 | }  // namespace | 
 |  | 
 | ostream& operator<<(ostream &os, const FunctionSample& sample); | 
 |  | 
 | // Convenience stream operator for pushing FunctionSamples into log messages. | 
 | ostream& operator<<(ostream &os, const FunctionSample& sample) { | 
 |   os << sample.ToDebugString(); | 
 |   return os; | 
 | } | 
 |  | 
 | LineSearch::LineSearch(const LineSearch::Options& options) | 
 |     : options_(options) {} | 
 |  | 
 | LineSearch* LineSearch::Create(const LineSearchType line_search_type, | 
 |                                const LineSearch::Options& options, | 
 |                                string* error) { | 
 |   LineSearch* line_search = NULL; | 
 |   switch (line_search_type) { | 
 |   case ceres::ARMIJO: | 
 |     line_search = new ArmijoLineSearch(options); | 
 |     break; | 
 |   case ceres::WOLFE: | 
 |     line_search = new WolfeLineSearch(options); | 
 |     break; | 
 |   default: | 
 |     *error = string("Invalid line search algorithm type: ") + | 
 |         LineSearchTypeToString(line_search_type) + | 
 |         string(", unable to create line search."); | 
 |     return NULL; | 
 |   } | 
 |   return line_search; | 
 | } | 
 |  | 
 | LineSearchFunction::LineSearchFunction(Evaluator* evaluator) | 
 |     : evaluator_(evaluator), | 
 |       position_(evaluator->NumParameters()), | 
 |       direction_(evaluator->NumEffectiveParameters()), | 
 |       scaled_direction_(evaluator->NumEffectiveParameters()), | 
 |       initial_evaluator_residual_time_in_seconds(0.0), | 
 |       initial_evaluator_jacobian_time_in_seconds(0.0) {} | 
 |  | 
 | void LineSearchFunction::Init(const Vector& position, | 
 |                               const Vector& direction) { | 
 |   position_ = position; | 
 |   direction_ = direction; | 
 | } | 
 |  | 
 | void LineSearchFunction::Evaluate(const double x, | 
 |                                   const bool evaluate_gradient, | 
 |                                   FunctionSample* output) { | 
 |   output->x = x; | 
 |   output->vector_x_is_valid = false; | 
 |   output->value_is_valid = false; | 
 |   output->gradient_is_valid = false; | 
 |   output->vector_gradient_is_valid = false; | 
 |  | 
 |   scaled_direction_ = output->x * direction_; | 
 |   output->vector_x.resize(position_.rows(), 1); | 
 |   if (!evaluator_->Plus(position_.data(), | 
 |                         scaled_direction_.data(), | 
 |                         output->vector_x.data())) { | 
 |     return; | 
 |   } | 
 |   output->vector_x_is_valid = true; | 
 |  | 
 |   double* gradient = NULL; | 
 |   if (evaluate_gradient) { | 
 |     output->vector_gradient.resize(direction_.rows(), 1); | 
 |     gradient = output->vector_gradient.data(); | 
 |   } | 
 |   const bool eval_status = evaluator_->Evaluate( | 
 |       output->vector_x.data(), &(output->value), NULL, gradient, NULL); | 
 |  | 
 |   if (!eval_status || !std::isfinite(output->value)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   output->value_is_valid = true; | 
 |   if (!evaluate_gradient) { | 
 |     return; | 
 |   } | 
 |  | 
 |   output->gradient = direction_.dot(output->vector_gradient); | 
 |   if (!std::isfinite(output->gradient)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   output->gradient_is_valid = true; | 
 |   output->vector_gradient_is_valid = true; | 
 | } | 
 |  | 
 | double LineSearchFunction::DirectionInfinityNorm() const { | 
 |   return direction_.lpNorm<Eigen::Infinity>(); | 
 | } | 
 |  | 
 | void LineSearchFunction::ResetTimeStatistics() { | 
 |   const map<string, CallStatistics> evaluator_statistics = | 
 |       evaluator_->Statistics(); | 
 |  | 
 |   initial_evaluator_residual_time_in_seconds = | 
 |       FindWithDefault( | 
 |           evaluator_statistics, "Evaluator::Residual", CallStatistics()) | 
 |           .time; | 
 |   initial_evaluator_jacobian_time_in_seconds = | 
 |       FindWithDefault( | 
 |           evaluator_statistics, "Evaluator::Jacobian", CallStatistics()) | 
 |           .time; | 
 | } | 
 |  | 
 | void LineSearchFunction::TimeStatistics( | 
 |     double* cost_evaluation_time_in_seconds, | 
 |     double* gradient_evaluation_time_in_seconds) const { | 
 |   const map<string, CallStatistics> evaluator_time_statistics = | 
 |       evaluator_->Statistics(); | 
 |   *cost_evaluation_time_in_seconds = | 
 |       FindWithDefault( | 
 |           evaluator_time_statistics, "Evaluator::Residual", CallStatistics()) | 
 |           .time - | 
 |       initial_evaluator_residual_time_in_seconds; | 
 |   // Strictly speaking this will slightly underestimate the time spent | 
 |   // evaluating the gradient of the line search univariate cost function as it | 
 |   // does not count the time spent performing the dot product with the direction | 
 |   // vector.  However, this will typically be small by comparison, and also | 
 |   // allows direct subtraction of the timing information from the totals for | 
 |   // the evaluator returned in the solver summary. | 
 |   *gradient_evaluation_time_in_seconds = | 
 |       FindWithDefault( | 
 |           evaluator_time_statistics, "Evaluator::Jacobian", CallStatistics()) | 
 |           .time - | 
 |       initial_evaluator_jacobian_time_in_seconds; | 
 | } | 
 |  | 
 | void LineSearch::Search(double step_size_estimate, | 
 |                         double initial_cost, | 
 |                         double initial_gradient, | 
 |                         Summary* summary) const { | 
 |   const double start_time = WallTimeInSeconds(); | 
 |   CHECK(summary != nullptr); | 
 |   *summary = LineSearch::Summary(); | 
 |  | 
 |   summary->cost_evaluation_time_in_seconds = 0.0; | 
 |   summary->gradient_evaluation_time_in_seconds = 0.0; | 
 |   summary->polynomial_minimization_time_in_seconds = 0.0; | 
 |   options().function->ResetTimeStatistics(); | 
 |   this->DoSearch(step_size_estimate, initial_cost, initial_gradient, summary); | 
 |   options().function-> | 
 |       TimeStatistics(&summary->cost_evaluation_time_in_seconds, | 
 |                      &summary->gradient_evaluation_time_in_seconds); | 
 |  | 
 |   summary->total_time_in_seconds = WallTimeInSeconds() - start_time; | 
 | } | 
 |  | 
 | // Returns step_size \in [min_step_size, max_step_size] which minimizes the | 
 | // polynomial of degree defined by interpolation_type which interpolates all | 
 | // of the provided samples with valid values. | 
 | double LineSearch::InterpolatingPolynomialMinimizingStepSize( | 
 |     const LineSearchInterpolationType& interpolation_type, | 
 |     const FunctionSample& lowerbound, | 
 |     const FunctionSample& previous, | 
 |     const FunctionSample& current, | 
 |     const double min_step_size, | 
 |     const double max_step_size) const { | 
 |   if (!current.value_is_valid || | 
 |       (interpolation_type == BISECTION && | 
 |        max_step_size <= current.x)) { | 
 |     // Either: sample is invalid; or we are using BISECTION and contracting | 
 |     // the step size. | 
 |     return std::min(std::max(current.x * 0.5, min_step_size), max_step_size); | 
 |   } else if (interpolation_type == BISECTION) { | 
 |     CHECK_GT(max_step_size, current.x); | 
 |     // We are expanding the search (during a Wolfe bracketing phase) using | 
 |     // BISECTION interpolation.  Using BISECTION when trying to expand is | 
 |     // strictly speaking an oxymoron, but we define this to mean always taking | 
 |     // the maximum step size so that the Armijo & Wolfe implementations are | 
 |     // agnostic to the interpolation type. | 
 |     return max_step_size; | 
 |   } | 
 |   // Only check if lower-bound is valid here, where it is required | 
 |   // to avoid replicating current.value_is_valid == false | 
 |   // behaviour in WolfeLineSearch. | 
 |   CHECK(lowerbound.value_is_valid) | 
 |       << std::scientific << std::setprecision(kErrorMessageNumericPrecision) | 
 |       << "Ceres bug: lower-bound sample for interpolation is invalid, " | 
 |       << "please contact the developers!, interpolation_type: " | 
 |       << LineSearchInterpolationTypeToString(interpolation_type) | 
 |       << ", lowerbound: " << lowerbound << ", previous: " << previous | 
 |       << ", current: " << current; | 
 |  | 
 |   // Select step size by interpolating the function and gradient values | 
 |   // and minimizing the corresponding polynomial. | 
 |   vector<FunctionSample> samples; | 
 |   samples.push_back(lowerbound); | 
 |  | 
 |   if (interpolation_type == QUADRATIC) { | 
 |     // Two point interpolation using function values and the | 
 |     // gradient at the lower bound. | 
 |     samples.push_back(FunctionSample(current.x, current.value)); | 
 |  | 
 |     if (previous.value_is_valid) { | 
 |       // Three point interpolation, using function values and the | 
 |       // gradient at the lower bound. | 
 |       samples.push_back(FunctionSample(previous.x, previous.value)); | 
 |     } | 
 |   } else if (interpolation_type == CUBIC) { | 
 |     // Two point interpolation using the function values and the gradients. | 
 |     samples.push_back(current); | 
 |  | 
 |     if (previous.value_is_valid) { | 
 |       // Three point interpolation using the function values and | 
 |       // the gradients. | 
 |       samples.push_back(previous); | 
 |     } | 
 |   } else { | 
 |     LOG(FATAL) << "Ceres bug: No handler for interpolation_type: " | 
 |                << LineSearchInterpolationTypeToString(interpolation_type) | 
 |                << ", please contact the developers!"; | 
 |   } | 
 |  | 
 |   double step_size = 0.0, unused_min_value = 0.0; | 
 |   MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size, | 
 |                                   &step_size, &unused_min_value); | 
 |   return step_size; | 
 | } | 
 |  | 
 | ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options) | 
 |     : LineSearch(options) {} | 
 |  | 
 | void ArmijoLineSearch::DoSearch(const double step_size_estimate, | 
 |                                 const double initial_cost, | 
 |                                 const double initial_gradient, | 
 |                                 Summary* summary) const { | 
 |   CHECK_GE(step_size_estimate, 0.0); | 
 |   CHECK_GT(options().sufficient_decrease, 0.0); | 
 |   CHECK_LT(options().sufficient_decrease, 1.0); | 
 |   CHECK_GT(options().max_num_iterations, 0); | 
 |   LineSearchFunction* function = options().function; | 
 |  | 
 |   // Note initial_cost & initial_gradient are evaluated at step_size = 0, | 
 |   // not step_size_estimate, which is our starting guess. | 
 |   FunctionSample initial_position(0.0, initial_cost, initial_gradient); | 
 |   initial_position.vector_x = function->position(); | 
 |   initial_position.vector_x_is_valid = true; | 
 |  | 
 |   const double descent_direction_max_norm = function->DirectionInfinityNorm(); | 
 |   FunctionSample previous; | 
 |   FunctionSample current; | 
 |  | 
 |   // As the Armijo line search algorithm always uses the initial point, for | 
 |   // which both the function value and derivative are known, when fitting a | 
 |   // minimizing polynomial, we can fit up to a quadratic without requiring the | 
 |   // gradient at the current query point. | 
 |   const bool kEvaluateGradient = options().interpolation_type == CUBIC; | 
 |  | 
 |   ++summary->num_function_evaluations; | 
 |   if (kEvaluateGradient) { | 
 |     ++summary->num_gradient_evaluations; | 
 |   } | 
 |  | 
 |   function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t); | 
 |   while (!current.value_is_valid || | 
 |          current.value > (initial_cost | 
 |                           + options().sufficient_decrease | 
 |                           * initial_gradient | 
 |                           * current.x)) { | 
 |     // If current.value_is_valid is false, we treat it as if the cost at that | 
 |     // point is not large enough to satisfy the sufficient decrease condition. | 
 |     ++summary->num_iterations; | 
 |     if (summary->num_iterations >= options().max_num_iterations) { | 
 |       summary->error = | 
 |           StringPrintf("Line search failed: Armijo failed to find a point " | 
 |                        "satisfying the sufficient decrease condition within " | 
 |                        "specified max_num_iterations: %d.", | 
 |                        options().max_num_iterations); | 
 |       LOG_IF(WARNING, !options().is_silent) << summary->error; | 
 |       return; | 
 |     } | 
 |  | 
 |     const double polynomial_minimization_start_time = WallTimeInSeconds(); | 
 |     const double step_size = | 
 |         this->InterpolatingPolynomialMinimizingStepSize( | 
 |             options().interpolation_type, | 
 |             initial_position, | 
 |             previous, | 
 |             current, | 
 |             (options().max_step_contraction * current.x), | 
 |             (options().min_step_contraction * current.x)); | 
 |     summary->polynomial_minimization_time_in_seconds += | 
 |         (WallTimeInSeconds() - polynomial_minimization_start_time); | 
 |  | 
 |     if (step_size * descent_direction_max_norm < options().min_step_size) { | 
 |       summary->error = | 
 |           StringPrintf("Line search failed: step_size too small: %.5e " | 
 |                        "with descent_direction_max_norm: %.5e.", step_size, | 
 |                        descent_direction_max_norm); | 
 |       LOG_IF(WARNING, !options().is_silent) << summary->error; | 
 |       return; | 
 |     } | 
 |  | 
 |     previous = current; | 
 |  | 
 |     ++summary->num_function_evaluations; | 
 |     if (kEvaluateGradient) { | 
 |       ++summary->num_gradient_evaluations; | 
 |     } | 
 |  | 
 |     function->Evaluate(step_size, kEvaluateGradient, ¤t); | 
 |   } | 
 |  | 
 |   summary->optimal_point = current; | 
 |   summary->success = true; | 
 | } | 
 |  | 
 | WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options) | 
 |     : LineSearch(options) {} | 
 |  | 
 | void WolfeLineSearch::DoSearch(const double step_size_estimate, | 
 |                                const double initial_cost, | 
 |                                const double initial_gradient, | 
 |                                Summary* summary) const { | 
 |   // All parameters should have been validated by the Solver, but as | 
 |   // invalid values would produce crazy nonsense, hard check them here. | 
 |   CHECK_GE(step_size_estimate, 0.0); | 
 |   CHECK_GT(options().sufficient_decrease, 0.0); | 
 |   CHECK_GT(options().sufficient_curvature_decrease, | 
 |            options().sufficient_decrease); | 
 |   CHECK_LT(options().sufficient_curvature_decrease, 1.0); | 
 |   CHECK_GT(options().max_step_expansion, 1.0); | 
 |  | 
 |   // Note initial_cost & initial_gradient are evaluated at step_size = 0, | 
 |   // not step_size_estimate, which is our starting guess. | 
 |   FunctionSample initial_position(0.0, initial_cost, initial_gradient); | 
 |   initial_position.vector_x = options().function->position(); | 
 |   initial_position.vector_x_is_valid = true; | 
 |   bool do_zoom_search = false; | 
 |   // Important: The high/low in bracket_high & bracket_low refer to their | 
 |   // _function_ values, not their step sizes i.e. it is _not_ required that | 
 |   // bracket_low.x < bracket_high.x. | 
 |   FunctionSample solution, bracket_low, bracket_high; | 
 |  | 
 |   // Wolfe bracketing phase: Increases step_size until either it finds a point | 
 |   // that satisfies the (strong) Wolfe conditions, or an interval that brackets | 
 |   // step sizes which satisfy the conditions.  From Nocedal & Wright [1] p61 the | 
 |   // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying | 
 |   // the strong Wolfe conditions if one of the following conditions are met: | 
 |   // | 
 |   //   1. step_size_{k} violates the sufficient decrease (Armijo) condition. | 
 |   //   2. f(step_size_{k}) >= f(step_size_{k-1}). | 
 |   //   3. f'(step_size_{k}) >= 0. | 
 |   // | 
 |   // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring | 
 |   // this special case, step_size monotonically increases during bracketing. | 
 |   if (!this->BracketingPhase(initial_position, | 
 |                              step_size_estimate, | 
 |                              &bracket_low, | 
 |                              &bracket_high, | 
 |                              &do_zoom_search, | 
 |                              summary)) { | 
 |     // Failed to find either a valid point, a valid bracket satisfying the Wolfe | 
 |     // conditions, or even a step size > minimum tolerance satisfying the Armijo | 
 |     // condition. | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!do_zoom_search) { | 
 |     // Either: Bracketing phase already found a point satisfying the strong | 
 |     // Wolfe conditions, thus no Zoom required. | 
 |     // | 
 |     // Or: Bracketing failed to find a valid bracket or a point satisfying the | 
 |     // strong Wolfe conditions within max_num_iterations, or whilst searching | 
 |     // shrank the bracket width until it was below our minimum tolerance. | 
 |     // As these are 'artificial' constraints, and we would otherwise fail to | 
 |     // produce a valid point when ArmijoLineSearch would succeed, we return the | 
 |     // point with the lowest cost found thus far which satsifies the Armijo | 
 |     // condition (but not the Wolfe conditions). | 
 |     summary->optimal_point = bracket_low; | 
 |     summary->success = true; | 
 |     return; | 
 |   } | 
 |  | 
 |   VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision) | 
 |           << "Starting line search zoom phase with bracket_low: " | 
 |           << bracket_low << ", bracket_high: " << bracket_high | 
 |           << ", bracket width: " << fabs(bracket_low.x - bracket_high.x) | 
 |           << ", bracket abs delta cost: " | 
 |           << fabs(bracket_low.value - bracket_high.value); | 
 |  | 
 |   // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of | 
 |   // non-zero, finite width that should bracket step sizes which satisfy the | 
 |   // (strong) Wolfe conditions (before finding a step size that satisfies the | 
 |   // conditions).  Zoom successively decreases the size of the interval until a | 
 |   // step size which satisfies the Wolfe conditions is found.  The interval is | 
 |   // defined by bracket_low & bracket_high, which satisfy: | 
 |   // | 
 |   //   1. The interval bounded by step sizes: bracket_low.x & bracket_high.x | 
 |   //      contains step sizes that satsify the strong Wolfe conditions. | 
 |   //   2. bracket_low.x is of all the step sizes evaluated *which satisifed the | 
 |   //      Armijo sufficient decrease condition*, the one which generated the | 
 |   //      smallest function value, i.e. bracket_low.value < | 
 |   //      f(all other steps satisfying Armijo). | 
 |   //        - Note that this does _not_ (necessarily) mean that initially | 
 |   //          bracket_low.value < bracket_high.value (although this is typical) | 
 |   //          e.g. when bracket_low = initial_position, and bracket_high is the | 
 |   //          first sample, and which does not satisfy the Armijo condition, | 
 |   //          but still has bracket_high.value < initial_position.value. | 
 |   //   3. bracket_high is chosen after bracket_low, s.t. | 
 |   //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0. | 
 |   if (!this->ZoomPhase(initial_position, | 
 |                        bracket_low, | 
 |                        bracket_high, | 
 |                        &solution, | 
 |                        summary) && !solution.value_is_valid) { | 
 |     // Failed to find a valid point (given the specified decrease parameters) | 
 |     // within the specified bracket. | 
 |     return; | 
 |   } | 
 |   // Ensure that if we ran out of iterations whilst zooming the bracket, or | 
 |   // shrank the bracket width to < tolerance and failed to find a point which | 
 |   // satisfies the strong Wolfe curvature condition, that we return the point | 
 |   // amongst those found thus far, which minimizes f() and satisfies the Armijo | 
 |   // condition. | 
 |  | 
 |   if (!solution.value_is_valid || solution.value > bracket_low.value) { | 
 |     summary->optimal_point = bracket_low; | 
 |   } else { | 
 |     summary->optimal_point = solution; | 
 |   } | 
 |  | 
 |   summary->success = true; | 
 | } | 
 |  | 
 | // Returns true if either: | 
 | // | 
 | // A termination condition satisfying the (strong) Wolfe bracketing conditions | 
 | // is found: | 
 | // | 
 | // - A valid point, defined as a bracket of zero width [zoom not required]. | 
 | // - A valid bracket (of width > tolerance), [zoom required]. | 
 | // | 
 | // Or, searching was stopped due to an 'artificial' constraint, i.e. not | 
 | // a condition imposed / required by the underlying algorithm, but instead an | 
 | // engineering / implementation consideration. But a step which exceeds the | 
 | // minimum step size, and satsifies the Armijo condition was still found, | 
 | // and should thus be used [zoom not required]. | 
 | // | 
 | // Returns false if no step size > minimum step size was found which | 
 | // satisfies at least the Armijo condition. | 
 | bool WolfeLineSearch::BracketingPhase( | 
 |     const FunctionSample& initial_position, | 
 |     const double step_size_estimate, | 
 |     FunctionSample* bracket_low, | 
 |     FunctionSample* bracket_high, | 
 |     bool* do_zoom_search, | 
 |     Summary* summary) const { | 
 |   LineSearchFunction* function = options().function; | 
 |  | 
 |   FunctionSample previous = initial_position; | 
 |   FunctionSample current; | 
 |  | 
 |   const double descent_direction_max_norm = | 
 |       function->DirectionInfinityNorm(); | 
 |  | 
 |   *do_zoom_search = false; | 
 |   *bracket_low = initial_position; | 
 |  | 
 |   // As we require the gradient to evaluate the Wolfe condition, we always | 
 |   // calculate it together with the value, irrespective of the interpolation | 
 |   // type.  As opposed to only calculating the gradient after the Armijo | 
 |   // condition is satisifed, as the computational saving from this approach | 
 |   // would be slight (perhaps even negative due to the extra call).  Also, | 
 |   // always calculating the value & gradient together protects against us | 
 |   // reporting invalid solutions if the cost function returns slightly different | 
 |   // function values when evaluated with / without gradients (due to numerical | 
 |   // issues). | 
 |   ++summary->num_function_evaluations; | 
 |   ++summary->num_gradient_evaluations; | 
 |   const bool kEvaluateGradient = true; | 
 |   function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t); | 
 |   while (true) { | 
 |     ++summary->num_iterations; | 
 |  | 
 |     if (current.value_is_valid && | 
 |         (current.value > (initial_position.value | 
 |                           + options().sufficient_decrease | 
 |                           * initial_position.gradient | 
 |                           * current.x) || | 
 |          (previous.value_is_valid && current.value > previous.value))) { | 
 |       // Bracket found: current step size violates Armijo sufficient decrease | 
 |       // condition, or has stepped past an inflection point of f() relative to | 
 |       // previous step size. | 
 |       *do_zoom_search = true; | 
 |       *bracket_low = previous; | 
 |       *bracket_high = current; | 
 |       VLOG(3) << std::scientific | 
 |               << std::setprecision(kErrorMessageNumericPrecision) | 
 |               << "Bracket found: current step (" << current.x | 
 |               << ") violates Armijo sufficient condition, or has passed an " | 
 |               << "inflection point of f() based on value."; | 
 |       break; | 
 |     } | 
 |  | 
 |     if (current.value_is_valid && | 
 |         fabs(current.gradient) <= | 
 |         -options().sufficient_curvature_decrease * initial_position.gradient) { | 
 |       // Current step size satisfies the strong Wolfe conditions, and is thus a | 
 |       // valid termination point, therefore a Zoom not required. | 
 |       *bracket_low = current; | 
 |       *bracket_high = current; | 
 |       VLOG(3) << std::scientific | 
 |               << std::setprecision(kErrorMessageNumericPrecision) | 
 |               << "Bracketing phase found step size: " << current.x | 
 |               << ", satisfying strong Wolfe conditions, initial_position: " | 
 |               << initial_position << ", current: " << current; | 
 |       break; | 
 |  | 
 |     } else if (current.value_is_valid && current.gradient >= 0) { | 
 |       // Bracket found: current step size has stepped past an inflection point | 
 |       // of f(), but Armijo sufficient decrease is still satisfied and | 
 |       // f(current) is our best minimum thus far.  Remember step size | 
 |       // monotonically increases, thus previous_step_size < current_step_size | 
 |       // even though f(previous) > f(current). | 
 |       *do_zoom_search = true; | 
 |       // Note inverse ordering from first bracket case. | 
 |       *bracket_low = current; | 
 |       *bracket_high = previous; | 
 |       VLOG(3) << "Bracket found: current step (" << current.x | 
 |               << ") satisfies Armijo, but has gradient >= 0, thus have passed " | 
 |               << "an inflection point of f()."; | 
 |       break; | 
 |  | 
 |     } else if (current.value_is_valid && | 
 |                fabs(current.x - previous.x) * descent_direction_max_norm | 
 |                < options().min_step_size) { | 
 |       // We have shrunk the search bracket to a width less than our tolerance, | 
 |       // and still not found either a point satisfying the strong Wolfe | 
 |       // conditions, or a valid bracket containing such a point. Stop searching | 
 |       // and set bracket_low to the size size amongst all those tested which | 
 |       // minimizes f() and satisfies the Armijo condition. | 
 |       LOG_IF(WARNING, !options().is_silent) | 
 |           << "Line search failed: Wolfe bracketing phase shrank " | 
 |           << "bracket width: " << fabs(current.x - previous.x) | 
 |           <<  ", to < tolerance: " << options().min_step_size | 
 |           << ", with descent_direction_max_norm: " | 
 |           << descent_direction_max_norm << ", and failed to find " | 
 |           << "a point satisfying the strong Wolfe conditions or a " | 
 |           << "bracketing containing such a point. Accepting " | 
 |           << "point found satisfying Armijo condition only, to " | 
 |           << "allow continuation."; | 
 |       *bracket_low = current; | 
 |       break; | 
 |  | 
 |     } else if (summary->num_iterations >= options().max_num_iterations) { | 
 |       // Check num iterations bound here so that we always evaluate the | 
 |       // max_num_iterations-th iteration against all conditions, and | 
 |       // then perform no additional (unused) evaluations. | 
 |       summary->error = | 
 |           StringPrintf("Line search failed: Wolfe bracketing phase failed to " | 
 |                        "find a point satisfying strong Wolfe conditions, or a " | 
 |                        "bracket containing such a point within specified " | 
 |                        "max_num_iterations: %d", options().max_num_iterations); | 
 |       LOG_IF(WARNING, !options().is_silent) << summary->error; | 
 |       // Ensure that bracket_low is always set to the step size amongst all | 
 |       // those tested which minimizes f() and satisfies the Armijo condition | 
 |       // when we terminate due to the 'artificial' max_num_iterations condition. | 
 |       *bracket_low = | 
 |           current.value_is_valid && current.value < bracket_low->value | 
 |           ? current : *bracket_low; | 
 |       break; | 
 |     } | 
 |     // Either: f(current) is invalid; or, f(current) is valid, but does not | 
 |     // satisfy the strong Wolfe conditions itself, or the conditions for | 
 |     // being a boundary of a bracket. | 
 |  | 
 |     // If f(current) is valid, (but meets no criteria) expand the search by | 
 |     // increasing the step size.  If f(current) is invalid, contract the step | 
 |     // size. | 
 |     // | 
 |     // In Nocedal & Wright [1] (p60), the step-size can only increase in the | 
 |     // bracketing phase: step_size_{k+1} \in [step_size_k, step_size_k * factor]. | 
 |     // However this does not account for the function returning invalid values | 
 |     // which we support, in which case we need to contract the step size whilst | 
 |     // ensuring that we do not invert the bracket, i.e, we require that: | 
 |     // step_size_{k-1} <= step_size_{k+1} < step_size_k. | 
 |     const double min_step_size = | 
 |         current.value_is_valid | 
 |         ? current.x : previous.x; | 
 |     const double max_step_size = | 
 |         current.value_is_valid | 
 |         ? (current.x * options().max_step_expansion) : current.x; | 
 |  | 
 |     // We are performing 2-point interpolation only here, but the API of | 
 |     // InterpolatingPolynomialMinimizingStepSize() allows for up to | 
 |     // 3-point interpolation, so pad call with a sample with an invalid | 
 |     // value that will therefore be ignored. | 
 |     const FunctionSample unused_previous; | 
 |     DCHECK(!unused_previous.value_is_valid); | 
 |     // Contracts step size if f(current) is not valid. | 
 |     const double polynomial_minimization_start_time = WallTimeInSeconds(); | 
 |     const double step_size = | 
 |         this->InterpolatingPolynomialMinimizingStepSize( | 
 |             options().interpolation_type, | 
 |             previous, | 
 |             unused_previous, | 
 |             current, | 
 |             min_step_size, | 
 |             max_step_size); | 
 |     summary->polynomial_minimization_time_in_seconds += | 
 |         (WallTimeInSeconds() - polynomial_minimization_start_time); | 
 |     if (step_size * descent_direction_max_norm < options().min_step_size) { | 
 |       summary->error = | 
 |           StringPrintf("Line search failed: step_size too small: %.5e " | 
 |                        "with descent_direction_max_norm: %.5e", step_size, | 
 |                        descent_direction_max_norm); | 
 |       LOG_IF(WARNING, !options().is_silent) << summary->error; | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Only advance the lower boundary (in x) of the bracket if f(current) | 
 |     // is valid such that we can support contracting the step size when | 
 |     // f(current) is invalid without risking inverting the bracket in x, i.e. | 
 |     // prevent previous.x > current.x. | 
 |     previous = current.value_is_valid ? current : previous; | 
 |     ++summary->num_function_evaluations; | 
 |     ++summary->num_gradient_evaluations; | 
 |     function->Evaluate(step_size, kEvaluateGradient, ¤t); | 
 |   } | 
 |  | 
 |   // Ensure that even if a valid bracket was found, we will only mark a zoom | 
 |   // as required if the bracket's width is greater than our minimum tolerance. | 
 |   if (*do_zoom_search && | 
 |       fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm | 
 |       < options().min_step_size) { | 
 |     *do_zoom_search = false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Returns true iff solution satisfies the strong Wolfe conditions. Otherwise, | 
 | // on return false, if we stopped searching due to the 'artificial' condition of | 
 | // reaching max_num_iterations, solution is the step size amongst all those | 
 | // tested, which satisfied the Armijo decrease condition and minimized f(). | 
 | bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position, | 
 |                                 FunctionSample bracket_low, | 
 |                                 FunctionSample bracket_high, | 
 |                                 FunctionSample* solution, | 
 |                                 Summary* summary) const { | 
 |   LineSearchFunction* function = options().function; | 
 |  | 
 |   CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid) | 
 |       << std::scientific << std::setprecision(kErrorMessageNumericPrecision) | 
 |       << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact " | 
 |       << "the developers!, initial_position: " << initial_position | 
 |       << ", bracket_low: " << bracket_low | 
 |       << ", bracket_high: "<< bracket_high; | 
 |   // We do not require bracket_high.gradient_is_valid as the gradient condition | 
 |   // for a valid bracket is only dependent upon bracket_low.gradient, and | 
 |   // in order to minimize jacobian evaluations, bracket_high.gradient may | 
 |   // not have been calculated (if bracket_high.value does not satisfy the | 
 |   // Armijo sufficient decrease condition and interpolation method does not | 
 |   // require it). | 
 |   // | 
 |   // We also do not require that: bracket_low.value < bracket_high.value, | 
 |   // although this is typical. This is to deal with the case when | 
 |   // bracket_low = initial_position, bracket_high is the first sample, | 
 |   // and bracket_high does not satisfy the Armijo condition, but still has | 
 |   // bracket_high.value < initial_position.value. | 
 |   CHECK(bracket_high.value_is_valid) | 
 |       << std::scientific << std::setprecision(kErrorMessageNumericPrecision) | 
 |       << "Ceres bug: f_high input to Wolfe Zoom invalid, please " | 
 |       << "contact the developers!, initial_position: " << initial_position | 
 |       << ", bracket_low: " << bracket_low | 
 |       << ", bracket_high: "<< bracket_high; | 
 |  | 
 |   if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) { | 
 |     // The third condition for a valid initial bracket: | 
 |     // | 
 |     //   3. bracket_high is chosen after bracket_low, s.t. | 
 |     //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0. | 
 |     // | 
 |     // is not satisfied.  As this can happen when the users' cost function | 
 |     // returns inconsistent gradient values relative to the function values, | 
 |     // we do not CHECK_LT(), but we do stop processing and return an invalid | 
 |     // value. | 
 |     summary->error = | 
 |         StringPrintf("Line search failed: Wolfe zoom phase passed a bracket " | 
 |                      "which does not satisfy: bracket_low.gradient * " | 
 |                      "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] " | 
 |                      "with initial_position: %s, bracket_low: %s, bracket_high:" | 
 |                      " %s, the most likely cause of which is the cost function " | 
 |                      "returning inconsistent gradient & function values.", | 
 |                      bracket_low.gradient * (bracket_high.x - bracket_low.x), | 
 |                      initial_position.ToDebugString().c_str(), | 
 |                      bracket_low.ToDebugString().c_str(), | 
 |                      bracket_high.ToDebugString().c_str()); | 
 |     LOG_IF(WARNING, !options().is_silent) << summary->error; | 
 |     solution->value_is_valid = false; | 
 |     return false; | 
 |   } | 
 |  | 
 |   const int num_bracketing_iterations = summary->num_iterations; | 
 |   const double descent_direction_max_norm = function->DirectionInfinityNorm(); | 
 |  | 
 |   while (true) { | 
 |     // Set solution to bracket_low, as it is our best step size (smallest f()) | 
 |     // found thus far and satisfies the Armijo condition, even though it does | 
 |     // not satisfy the Wolfe condition. | 
 |     *solution = bracket_low; | 
 |     if (summary->num_iterations >= options().max_num_iterations) { | 
 |       summary->error = | 
 |           StringPrintf("Line search failed: Wolfe zoom phase failed to " | 
 |                        "find a point satisfying strong Wolfe conditions " | 
 |                        "within specified max_num_iterations: %d, " | 
 |                        "(num iterations taken for bracketing: %d).", | 
 |                        options().max_num_iterations, num_bracketing_iterations); | 
 |       LOG_IF(WARNING, !options().is_silent) << summary->error; | 
 |       return false; | 
 |     } | 
 |     if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm | 
 |         < options().min_step_size) { | 
 |       // Bracket width has been reduced below tolerance, and no point satisfying | 
 |       // the strong Wolfe conditions has been found. | 
 |       summary->error = | 
 |           StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e " | 
 |                        "too small with descent_direction_max_norm: %.5e.", | 
 |                        fabs(bracket_high.x - bracket_low.x), | 
 |                        descent_direction_max_norm); | 
 |       LOG_IF(WARNING, !options().is_silent) << summary->error; | 
 |       return false; | 
 |     } | 
 |  | 
 |     ++summary->num_iterations; | 
 |     // Polynomial interpolation requires inputs ordered according to step size, | 
 |     // not f(step size). | 
 |     const FunctionSample& lower_bound_step = | 
 |         bracket_low.x < bracket_high.x ? bracket_low : bracket_high; | 
 |     const FunctionSample& upper_bound_step = | 
 |         bracket_low.x < bracket_high.x ? bracket_high : bracket_low; | 
 |     // We are performing 2-point interpolation only here, but the API of | 
 |     // InterpolatingPolynomialMinimizingStepSize() allows for up to | 
 |     // 3-point interpolation, so pad call with a sample with an invalid | 
 |     // value that will therefore be ignored. | 
 |     const FunctionSample unused_previous; | 
 |     DCHECK(!unused_previous.value_is_valid); | 
 |     const double polynomial_minimization_start_time = WallTimeInSeconds(); | 
 |     const double step_size = | 
 |         this->InterpolatingPolynomialMinimizingStepSize( | 
 |             options().interpolation_type, | 
 |             lower_bound_step, | 
 |             unused_previous, | 
 |             upper_bound_step, | 
 |             lower_bound_step.x, | 
 |             upper_bound_step.x); | 
 |     summary->polynomial_minimization_time_in_seconds += | 
 |         (WallTimeInSeconds() - polynomial_minimization_start_time); | 
 |     // No check on magnitude of step size being too small here as it is | 
 |     // lower-bounded by the initial bracket start point, which was valid. | 
 |     // | 
 |     // As we require the gradient to evaluate the Wolfe condition, we always | 
 |     // calculate it together with the value, irrespective of the interpolation | 
 |     // type.  As opposed to only calculating the gradient after the Armijo | 
 |     // condition is satisifed, as the computational saving from this approach | 
 |     // would be slight (perhaps even negative due to the extra call).  Also, | 
 |     // always calculating the value & gradient together protects against us | 
 |     // reporting invalid solutions if the cost function returns slightly | 
 |     // different function values when evaluated with / without gradients (due | 
 |     // to numerical issues). | 
 |     ++summary->num_function_evaluations; | 
 |     ++summary->num_gradient_evaluations; | 
 |     const bool kEvaluateGradient = true; | 
 |     function->Evaluate(step_size, kEvaluateGradient, solution); | 
 |     if (!solution->value_is_valid || !solution->gradient_is_valid) { | 
 |       summary->error = | 
 |           StringPrintf("Line search failed: Wolfe Zoom phase found " | 
 |                        "step_size: %.5e, for which function is invalid, " | 
 |                        "between low_step: %.5e and high_step: %.5e " | 
 |                        "at which function is valid.", | 
 |                        solution->x, bracket_low.x, bracket_high.x); | 
 |       LOG_IF(WARNING, !options().is_silent) << summary->error; | 
 |       return false; | 
 |     } | 
 |  | 
 |     VLOG(3) << "Zoom iteration: " | 
 |             << summary->num_iterations - num_bracketing_iterations | 
 |             << ", bracket_low: " << bracket_low | 
 |             << ", bracket_high: " << bracket_high | 
 |             << ", minimizing solution: " << *solution; | 
 |  | 
 |     if ((solution->value > (initial_position.value | 
 |                             + options().sufficient_decrease | 
 |                             * initial_position.gradient | 
 |                             * solution->x)) || | 
 |         (solution->value >= bracket_low.value)) { | 
 |       // Armijo sufficient decrease not satisfied, or not better | 
 |       // than current lowest sample, use as new upper bound. | 
 |       bracket_high = *solution; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Armijo sufficient decrease satisfied, check strong Wolfe condition. | 
 |     if (fabs(solution->gradient) <= | 
 |         -options().sufficient_curvature_decrease * initial_position.gradient) { | 
 |       // Found a valid termination point satisfying strong Wolfe conditions. | 
 |       VLOG(3) << std::scientific | 
 |               << std::setprecision(kErrorMessageNumericPrecision) | 
 |               << "Zoom phase found step size: " << solution->x | 
 |               << ", satisfying strong Wolfe conditions."; | 
 |       break; | 
 |  | 
 |     } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) { | 
 |       bracket_high = bracket_low; | 
 |     } | 
 |  | 
 |     bracket_low = *solution; | 
 |   } | 
 |   // Solution contains a valid point which satisfies the strong Wolfe | 
 |   // conditions. | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |