|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | //         tbennun@gmail.com (Tal Ben-Nun) | 
|  |  | 
|  | #include "ceres/numeric_diff_test_utils.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  |  | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/test_util.h" | 
|  | #include "ceres/types.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | bool EasyFunctor::operator()(const double* x1, | 
|  | const double* x2, | 
|  | double* residuals) const { | 
|  | residuals[0] = residuals[1] = residuals[2] = 0; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | residuals[0] += x1[i] * x2[i]; | 
|  | residuals[2] += x2[i] * x2[i]; | 
|  | } | 
|  | residuals[1] = residuals[0] * residuals[0]; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( | 
|  | const CostFunction& cost_function, NumericDiffMethodType method) const { | 
|  | // The x1[0] is made deliberately small to test the performance near zero. | 
|  | // clang-format off | 
|  | double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 }; | 
|  | double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 }; | 
|  | double *parameters[] = { &x1[0], &x2[0] }; | 
|  | // clang-format on | 
|  |  | 
|  | double dydx1[15];  // 3 x 5, row major. | 
|  | double dydx2[15];  // 3 x 5, row major. | 
|  | double* jacobians[2] = {&dydx1[0], &dydx2[0]}; | 
|  |  | 
|  | double residuals[3] = {-1e-100, -2e-100, -3e-100}; | 
|  |  | 
|  | ASSERT_TRUE( | 
|  | cost_function.Evaluate(¶meters[0], &residuals[0], &jacobians[0])); | 
|  |  | 
|  | double expected_residuals[3]; | 
|  | EasyFunctor functor; | 
|  | functor(x1, x2, expected_residuals); | 
|  | EXPECT_EQ(expected_residuals[0], residuals[0]); | 
|  | EXPECT_EQ(expected_residuals[1], residuals[1]); | 
|  | EXPECT_EQ(expected_residuals[2], residuals[2]); | 
|  |  | 
|  | double tolerance = 0.0; | 
|  | switch (method) { | 
|  | default: | 
|  | case CENTRAL: | 
|  | tolerance = 3e-9; | 
|  | break; | 
|  |  | 
|  | case FORWARD: | 
|  | tolerance = 2e-5; | 
|  | break; | 
|  |  | 
|  | case RIDDERS: | 
|  | tolerance = 1e-13; | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | // clang-format off | 
|  | ExpectClose(x2[i],                    dydx1[5 * 0 + i], tolerance);  // y1 | 
|  | ExpectClose(x1[i],                    dydx2[5 * 0 + i], tolerance); | 
|  | ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance);  // y2 | 
|  | ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance); | 
|  | ExpectClose(0.0,                      dydx1[5 * 2 + i], tolerance);  // y3 | 
|  | ExpectClose(2 * x2[i],                dydx2[5 * 2 + i], tolerance); | 
|  | // clang-format on | 
|  | } | 
|  | } | 
|  |  | 
|  | bool TranscendentalFunctor::operator()(const double* x1, | 
|  | const double* x2, | 
|  | double* residuals) const { | 
|  | double x1x2 = 0; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | x1x2 += x1[i] * x2[i]; | 
|  | } | 
|  | residuals[0] = sin(x1x2); | 
|  | residuals[1] = exp(-x1x2 / 10); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( | 
|  | const CostFunction& cost_function, NumericDiffMethodType method) const { | 
|  | struct TestParameterBlocks { | 
|  | double x1[5]; | 
|  | double x2[5]; | 
|  | }; | 
|  |  | 
|  | // clang-format off | 
|  | std::vector<TestParameterBlocks> kTests =  { | 
|  | { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // No zeros. | 
|  | { 9.0, 9.0, 5.0, 5.0, 1.0 }, | 
|  | }, | 
|  | { { 0.0, 2.0, 3.0, 0.0, 5.0 },  // Some zeros x1. | 
|  | { 9.0, 9.0, 5.0, 5.0, 1.0 }, | 
|  | }, | 
|  | { { 1.0, 2.0, 3.0, 1.0, 5.0 },  // Some zeros x2. | 
|  | { 0.0, 9.0, 0.0, 5.0, 0.0 }, | 
|  | }, | 
|  | { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros x1. | 
|  | { 9.0, 9.0, 5.0, 5.0, 1.0 }, | 
|  | }, | 
|  | { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // All zeros x2. | 
|  | { 0.0, 0.0, 0.0, 0.0, 0.0 }, | 
|  | }, | 
|  | { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros. | 
|  | { 0.0, 0.0, 0.0, 0.0, 0.0 }, | 
|  | }, | 
|  | }; | 
|  | // clang-format on | 
|  |  | 
|  | for (auto& test : kTests) { | 
|  | double* x1 = &(test.x1[0]); | 
|  | double* x2 = &(test.x2[0]); | 
|  | double* parameters[] = {x1, x2}; | 
|  |  | 
|  | double dydx1[10]; | 
|  | double dydx2[10]; | 
|  | double* jacobians[2] = {&dydx1[0], &dydx2[0]}; | 
|  |  | 
|  | double residuals[2]; | 
|  |  | 
|  | ASSERT_TRUE( | 
|  | cost_function.Evaluate(¶meters[0], &residuals[0], &jacobians[0])); | 
|  | double x1x2 = 0; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | x1x2 += x1[i] * x2[i]; | 
|  | } | 
|  |  | 
|  | double tolerance = 0.0; | 
|  | switch (method) { | 
|  | default: | 
|  | case CENTRAL: | 
|  | tolerance = 2e-7; | 
|  | break; | 
|  |  | 
|  | case FORWARD: | 
|  | tolerance = 2e-5; | 
|  | break; | 
|  |  | 
|  | case RIDDERS: | 
|  | tolerance = 3e-12; | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | // clang-format off | 
|  | ExpectClose( x2[i] * cos(x1x2),              dydx1[5 * 0 + i], tolerance); | 
|  | ExpectClose( x1[i] * cos(x1x2),              dydx2[5 * 0 + i], tolerance); | 
|  | ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance); | 
|  | ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance); | 
|  | // clang-format on | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ExponentialFunctor::operator()(const double* x1, double* residuals) const { | 
|  | residuals[0] = exp(x1[0]); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( | 
|  | const CostFunction& cost_function) const { | 
|  | // Evaluating the functor at specific points for testing. | 
|  | std::vector<double> kTests = {1.0, 2.0, 3.0, 4.0, 5.0}; | 
|  |  | 
|  | // Minimal tolerance w.r.t. the cost function and the tests. | 
|  | const double kTolerance = 2e-14; | 
|  |  | 
|  | for (double& test : kTests) { | 
|  | double* parameters[] = {&test}; | 
|  | double dydx; | 
|  | double* jacobians[1] = {&dydx}; | 
|  | double residual; | 
|  |  | 
|  | ASSERT_TRUE( | 
|  | cost_function.Evaluate(¶meters[0], &residual, &jacobians[0])); | 
|  |  | 
|  | double expected_result = exp(test); | 
|  |  | 
|  | // Expect residual to be close to exp(x). | 
|  | ExpectClose(residual, expected_result, kTolerance); | 
|  |  | 
|  | // Check evaluated differences. dydx should also be close to exp(x). | 
|  | ExpectClose(dydx, expected_result, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool RandomizedFunctor::operator()(const double* x1, double* residuals) const { | 
|  | double random_value = uniform_distribution_(*prng_); | 
|  | residuals[0] = x1[0] * x1[0] + random_value; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( | 
|  | const CostFunction& cost_function) const { | 
|  | std::vector<double> kTests = {0.0, 1.0, 3.0, 4.0, 50.0}; | 
|  |  | 
|  | const double kTolerance = 2e-4; | 
|  |  | 
|  | for (double& test : kTests) { | 
|  | double* parameters[] = {&test}; | 
|  | double dydx; | 
|  | double* jacobians[1] = {&dydx}; | 
|  | double residual; | 
|  |  | 
|  | ASSERT_TRUE( | 
|  | cost_function.Evaluate(¶meters[0], &residual, &jacobians[0])); | 
|  |  | 
|  | // Expect residual to be close to x^2 w.r.t. noise factor. | 
|  | ExpectClose(residual, test * test, noise_factor_); | 
|  |  | 
|  | // Check evaluated differences. (dy/dx = ~2x) | 
|  | ExpectClose(dydx, 2 * test, kTolerance); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |