|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | // | 
|  | // A simple implementation of N-dimensional dual numbers, for automatically | 
|  | // computing exact derivatives of functions. | 
|  | // | 
|  | // While a complete treatment of the mechanics of automatic differentation is | 
|  | // beyond the scope of this header (see | 
|  | // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the | 
|  | // basic idea is to extend normal arithmetic with an extra element, "e," often | 
|  | // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual | 
|  | // numbers are extensions of the real numbers analogous to complex numbers: | 
|  | // whereas complex numbers augment the reals by introducing an imaginary unit i | 
|  | // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such | 
|  | // that e^2 = 0. Dual numbers have two components: the "real" component and the | 
|  | // "infinitesimal" component, generally written as x + y*e. Surprisingly, this | 
|  | // leads to a convenient method for computing exact derivatives without needing | 
|  | // to manipulate complicated symbolic expressions. | 
|  | // | 
|  | // For example, consider the function | 
|  | // | 
|  | //   f(x) = x^2 , | 
|  | // | 
|  | // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20. | 
|  | // Next, augument 10 with an infinitesimal to get: | 
|  | // | 
|  | //   f(10 + e) = (10 + e)^2 | 
|  | //             = 100 + 2 * 10 * e + e^2 | 
|  | //             = 100 + 20 * e       -+- | 
|  | //                     --            | | 
|  | //                     |             +--- This is zero, since e^2 = 0 | 
|  | //                     | | 
|  | //                     +----------------- This is df/dx! | 
|  | // | 
|  | // Note that the derivative of f with respect to x is simply the infinitesimal | 
|  | // component of the value of f(x + e). So, in order to take the derivative of | 
|  | // any function, it is only necessary to replace the numeric "object" used in | 
|  | // the function with one extended with infinitesimals. The class Jet, defined in | 
|  | // this header, is one such example of this, where substitution is done with | 
|  | // templates. | 
|  | // | 
|  | // To handle derivatives of functions taking multiple arguments, different | 
|  | // infinitesimals are used, one for each variable to take the derivative of. For | 
|  | // example, consider a scalar function of two scalar parameters x and y: | 
|  | // | 
|  | //   f(x, y) = x^2 + x * y | 
|  | // | 
|  | // Following the technique above, to compute the derivatives df/dx and df/dy for | 
|  | // f(1, 3) involves doing two evaluations of f, the first time replacing x with | 
|  | // x + e, the second time replacing y with y + e. | 
|  | // | 
|  | // For df/dx: | 
|  | // | 
|  | //   f(1 + e, y) = (1 + e)^2 + (1 + e) * 3 | 
|  | //               = 1 + 2 * e + 3 + 3 * e | 
|  | //               = 4 + 5 * e | 
|  | // | 
|  | //               --> df/dx = 5 | 
|  | // | 
|  | // For df/dy: | 
|  | // | 
|  | //   f(1, 3 + e) = 1^2 + 1 * (3 + e) | 
|  | //               = 1 + 3 + e | 
|  | //               = 4 + e | 
|  | // | 
|  | //               --> df/dy = 1 | 
|  | // | 
|  | // To take the gradient of f with the implementation of dual numbers ("jets") in | 
|  | // this file, it is necessary to create a single jet type which has components | 
|  | // for the derivative in x and y, and passing them to a templated version of f: | 
|  | // | 
|  | //   template<typename T> | 
|  | //   T f(const T &x, const T &y) { | 
|  | //     return x * x + x * y; | 
|  | //   } | 
|  | // | 
|  | //   // The "2" means there should be 2 dual number components. | 
|  | //   Jet<double, 2> x(0);  // Pick the 0th dual number for x. | 
|  | //   Jet<double, 2> y(1);  // Pick the 1st dual number for y. | 
|  | //   Jet<double, 2> z = f(x, y); | 
|  | // | 
|  | //   LOG(INFO) << "df/dx = " << z.v[0] | 
|  | //             << "df/dy = " << z.v[1]; | 
|  | // | 
|  | // Most users should not use Jet objects directly; a wrapper around Jet objects, | 
|  | // which makes computing the derivative, gradient, or jacobian of templated | 
|  | // functors simple, is in autodiff.h. Even autodiff.h should not be used | 
|  | // directly; instead autodiff_cost_function.h is typically the file of interest. | 
|  | // | 
|  | // For the more mathematically inclined, this file implements first-order | 
|  | // "jets". A 1st order jet is an element of the ring | 
|  | // | 
|  | //   T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2 | 
|  | // | 
|  | // which essentially means that each jet consists of a "scalar" value 'a' from T | 
|  | // and a 1st order perturbation vector 'v' of length N: | 
|  | // | 
|  | //   x = a + \sum_i v[i] t_i | 
|  | // | 
|  | // A shorthand is to write an element as x = a + u, where u is the pertubation. | 
|  | // Then, the main point about the arithmetic of jets is that the product of | 
|  | // perturbations is zero: | 
|  | // | 
|  | //   (a + u) * (b + v) = ab + av + bu + uv | 
|  | //                     = ab + (av + bu) + 0 | 
|  | // | 
|  | // which is what operator* implements below. Addition is simpler: | 
|  | // | 
|  | //   (a + u) + (b + v) = (a + b) + (u + v). | 
|  | // | 
|  | // The only remaining question is how to evaluate the function of a jet, for | 
|  | // which we use the chain rule: | 
|  | // | 
|  | //   f(a + u) = f(a) + f'(a) u | 
|  | // | 
|  | // where f'(a) is the (scalar) derivative of f at a. | 
|  | // | 
|  | // By pushing these things through sufficiently and suitably templated | 
|  | // functions, we can do automatic differentiation. Just be sure to turn on | 
|  | // function inlining and common-subexpression elimination, or it will be very | 
|  | // slow! | 
|  | // | 
|  | // WARNING: Most Ceres users should not directly include this file or know the | 
|  | // details of how jets work. Instead the suggested method for automatic | 
|  | // derivatives is to use autodiff_cost_function.h, which is a wrapper around | 
|  | // both jets.h and autodiff.h to make taking derivatives of cost functions for | 
|  | // use in Ceres easier. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_JET_H_ | 
|  | #define CERES_PUBLIC_JET_H_ | 
|  |  | 
|  | #include <cmath> | 
|  | #include <iosfwd> | 
|  | #include <iostream>  // NOLINT | 
|  | #include <limits> | 
|  | #include <string> | 
|  |  | 
|  | #include "Eigen/Core" | 
|  | #include "ceres/fpclassify.h" | 
|  | #include "ceres/internal/port.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | template <typename T, int N> | 
|  | struct Jet { | 
|  | enum { DIMENSION = N }; | 
|  |  | 
|  | // Default-construct "a" because otherwise this can lead to false errors about | 
|  | // uninitialized uses when other classes relying on default constructed T | 
|  | // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that | 
|  | // the C++ standard mandates that e.g. default constructed doubles are | 
|  | // initialized to 0.0; see sections 8.5 of the C++03 standard. | 
|  | Jet() : a() { | 
|  | v.setZero(); | 
|  | } | 
|  |  | 
|  | // Constructor from scalar: a + 0. | 
|  | explicit Jet(const T& value) { | 
|  | a = value; | 
|  | v.setZero(); | 
|  | } | 
|  |  | 
|  | // Constructor from scalar plus variable: a + t_i. | 
|  | Jet(const T& value, int k) { | 
|  | a = value; | 
|  | v.setZero(); | 
|  | v[k] = T(1.0); | 
|  | } | 
|  |  | 
|  | // Constructor from scalar and vector part | 
|  | // The use of Eigen::DenseBase allows Eigen expressions | 
|  | // to be passed in without being fully evaluated until | 
|  | // they are assigned to v | 
|  | template<typename Derived> | 
|  | EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v) | 
|  | : a(a), v(v) { | 
|  | } | 
|  |  | 
|  | // Compound operators | 
|  | Jet<T, N>& operator+=(const Jet<T, N> &y) { | 
|  | *this = *this + y; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Jet<T, N>& operator-=(const Jet<T, N> &y) { | 
|  | *this = *this - y; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Jet<T, N>& operator*=(const Jet<T, N> &y) { | 
|  | *this = *this * y; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Jet<T, N>& operator/=(const Jet<T, N> &y) { | 
|  | *this = *this / y; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // The scalar part. | 
|  | T a; | 
|  |  | 
|  | // The infinitesimal part. | 
|  |  | 
|  | // We allocate Jets on the stack and other places they | 
|  | // might not be aligned to 16-byte boundaries.  If we have C++11, we | 
|  | // can specify their alignment anyway, and thus can safely enable | 
|  | // vectorization on those matrices; in C++99, we are out of luck.  Figure out | 
|  | // what case we're in and do the right thing. | 
|  | #ifndef CERES_USE_CXX11 | 
|  | // fall back to safe version: | 
|  | Eigen::Matrix<T, N, 1, Eigen::DontAlign> v; | 
|  | #else | 
|  | static constexpr bool kShouldAlignMatrix = | 
|  | 16 <= ::ceres::port_constants::kMaxAlignBytes; | 
|  | static constexpr int kAlignHint = kShouldAlignMatrix ? | 
|  | Eigen::AutoAlign : Eigen::DontAlign; | 
|  | static constexpr size_t kAlignment = kShouldAlignMatrix ? 16 : 1; | 
|  | alignas(kAlignment) Eigen::Matrix<T, N, 1, kAlignHint> v; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | // Unary + | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> const& operator+(const Jet<T, N>& f) { | 
|  | return f; | 
|  | } | 
|  |  | 
|  | // TODO(keir): Try adding __attribute__((always_inline)) to these functions to | 
|  | // see if it causes a performance increase. | 
|  |  | 
|  | // Unary - | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator-(const Jet<T, N>&f) { | 
|  | return Jet<T, N>(-f.a, -f.v); | 
|  | } | 
|  |  | 
|  | // Binary + | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator+(const Jet<T, N>& f, | 
|  | const Jet<T, N>& g) { | 
|  | return Jet<T, N>(f.a + g.a, f.v + g.v); | 
|  | } | 
|  |  | 
|  | // Binary + with a scalar: x + s | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator+(const Jet<T, N>& f, T s) { | 
|  | return Jet<T, N>(f.a + s, f.v); | 
|  | } | 
|  |  | 
|  | // Binary + with a scalar: s + x | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator+(T s, const Jet<T, N>& f) { | 
|  | return Jet<T, N>(f.a + s, f.v); | 
|  | } | 
|  |  | 
|  | // Binary - | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator-(const Jet<T, N>& f, | 
|  | const Jet<T, N>& g) { | 
|  | return Jet<T, N>(f.a - g.a, f.v - g.v); | 
|  | } | 
|  |  | 
|  | // Binary - with a scalar: x - s | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator-(const Jet<T, N>& f, T s) { | 
|  | return Jet<T, N>(f.a - s, f.v); | 
|  | } | 
|  |  | 
|  | // Binary - with a scalar: s - x | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator-(T s, const Jet<T, N>& f) { | 
|  | return Jet<T, N>(s - f.a, -f.v); | 
|  | } | 
|  |  | 
|  | // Binary * | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator*(const Jet<T, N>& f, | 
|  | const Jet<T, N>& g) { | 
|  | return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a); | 
|  | } | 
|  |  | 
|  | // Binary * with a scalar: x * s | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator*(const Jet<T, N>& f, T s) { | 
|  | return Jet<T, N>(f.a * s, f.v * s); | 
|  | } | 
|  |  | 
|  | // Binary * with a scalar: s * x | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator*(T s, const Jet<T, N>& f) { | 
|  | return Jet<T, N>(f.a * s, f.v * s); | 
|  | } | 
|  |  | 
|  | // Binary / | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator/(const Jet<T, N>& f, | 
|  | const Jet<T, N>& g) { | 
|  | // This uses: | 
|  | // | 
|  | //   a + u   (a + u)(b - v)   (a + u)(b - v) | 
|  | //   ----- = -------------- = -------------- | 
|  | //   b + v   (b + v)(b - v)        b^2 | 
|  | // | 
|  | // which holds because v*v = 0. | 
|  | const T g_a_inverse = T(1.0) / g.a; | 
|  | const T f_a_by_g_a = f.a * g_a_inverse; | 
|  | return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse); | 
|  | } | 
|  |  | 
|  | // Binary / with a scalar: s / x | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator/(T s, const Jet<T, N>& g) { | 
|  | const T minus_s_g_a_inverse2 = -s / (g.a * g.a); | 
|  | return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2); | 
|  | } | 
|  |  | 
|  | // Binary / with a scalar: x / s | 
|  | template<typename T, int N> inline | 
|  | Jet<T, N> operator/(const Jet<T, N>& f, T s) { | 
|  | const T s_inverse = T(1.0) / s; | 
|  | return Jet<T, N>(f.a * s_inverse, f.v * s_inverse); | 
|  | } | 
|  |  | 
|  | // Binary comparison operators for both scalars and jets. | 
|  | #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \ | 
|  | template<typename T, int N> inline \ | 
|  | bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \ | 
|  | return f.a op g.a; \ | 
|  | } \ | 
|  | template<typename T, int N> inline \ | 
|  | bool operator op(const T& s, const Jet<T, N>& g) { \ | 
|  | return s op g.a; \ | 
|  | } \ | 
|  | template<typename T, int N> inline \ | 
|  | bool operator op(const Jet<T, N>& f, const T& s) { \ | 
|  | return f.a op s; \ | 
|  | } | 
|  | CERES_DEFINE_JET_COMPARISON_OPERATOR( <  )  // NOLINT | 
|  | CERES_DEFINE_JET_COMPARISON_OPERATOR( <= )  // NOLINT | 
|  | CERES_DEFINE_JET_COMPARISON_OPERATOR( >  )  // NOLINT | 
|  | CERES_DEFINE_JET_COMPARISON_OPERATOR( >= )  // NOLINT | 
|  | CERES_DEFINE_JET_COMPARISON_OPERATOR( == )  // NOLINT | 
|  | CERES_DEFINE_JET_COMPARISON_OPERATOR( != )  // NOLINT | 
|  | #undef CERES_DEFINE_JET_COMPARISON_OPERATOR | 
|  |  | 
|  | // Pull some functions from namespace std. | 
|  | // | 
|  | // This is necessary because we want to use the same name (e.g. 'sqrt') for | 
|  | // double-valued and Jet-valued functions, but we are not allowed to put | 
|  | // Jet-valued functions inside namespace std. | 
|  | // | 
|  | // TODO(keir): Switch to "using". | 
|  | inline double abs     (double x) { return std::abs(x);      } | 
|  | inline double log     (double x) { return std::log(x);      } | 
|  | inline double exp     (double x) { return std::exp(x);      } | 
|  | inline double sqrt    (double x) { return std::sqrt(x);     } | 
|  | inline double cos     (double x) { return std::cos(x);      } | 
|  | inline double acos    (double x) { return std::acos(x);     } | 
|  | inline double sin     (double x) { return std::sin(x);      } | 
|  | inline double asin    (double x) { return std::asin(x);     } | 
|  | inline double tan     (double x) { return std::tan(x);      } | 
|  | inline double atan    (double x) { return std::atan(x);     } | 
|  | inline double sinh    (double x) { return std::sinh(x);     } | 
|  | inline double cosh    (double x) { return std::cosh(x);     } | 
|  | inline double tanh    (double x) { return std::tanh(x);     } | 
|  | inline double floor   (double x) { return std::floor(x);    } | 
|  | inline double ceil    (double x) { return std::ceil(x);     } | 
|  | inline double pow  (double x, double y) { return std::pow(x, y);   } | 
|  | inline double atan2(double y, double x) { return std::atan2(y, x); } | 
|  |  | 
|  | // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule. | 
|  |  | 
|  | // abs(x + h) ~= x + h or -(x + h) | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> abs(const Jet<T, N>& f) { | 
|  | return f.a < T(0.0) ? -f : f; | 
|  | } | 
|  |  | 
|  | // log(a + h) ~= log(a) + h / a | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> log(const Jet<T, N>& f) { | 
|  | const T a_inverse = T(1.0) / f.a; | 
|  | return Jet<T, N>(log(f.a), f.v * a_inverse); | 
|  | } | 
|  |  | 
|  | // exp(a + h) ~= exp(a) + exp(a) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> exp(const Jet<T, N>& f) { | 
|  | const T tmp = exp(f.a); | 
|  | return Jet<T, N>(tmp, tmp * f.v); | 
|  | } | 
|  |  | 
|  | // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a)) | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> sqrt(const Jet<T, N>& f) { | 
|  | const T tmp = sqrt(f.a); | 
|  | const T two_a_inverse = T(1.0) / (T(2.0) * tmp); | 
|  | return Jet<T, N>(tmp, f.v * two_a_inverse); | 
|  | } | 
|  |  | 
|  | // cos(a + h) ~= cos(a) - sin(a) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> cos(const Jet<T, N>& f) { | 
|  | return Jet<T, N>(cos(f.a), - sin(f.a) * f.v); | 
|  | } | 
|  |  | 
|  | // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> acos(const Jet<T, N>& f) { | 
|  | const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a); | 
|  | return Jet<T, N>(acos(f.a), tmp * f.v); | 
|  | } | 
|  |  | 
|  | // sin(a + h) ~= sin(a) + cos(a) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> sin(const Jet<T, N>& f) { | 
|  | return Jet<T, N>(sin(f.a), cos(f.a) * f.v); | 
|  | } | 
|  |  | 
|  | // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> asin(const Jet<T, N>& f) { | 
|  | const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a); | 
|  | return Jet<T, N>(asin(f.a), tmp * f.v); | 
|  | } | 
|  |  | 
|  | // tan(a + h) ~= tan(a) + (1 + tan(a)^2) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> tan(const Jet<T, N>& f) { | 
|  | const T tan_a = tan(f.a); | 
|  | const T tmp = T(1.0) + tan_a * tan_a; | 
|  | return Jet<T, N>(tan_a, tmp * f.v); | 
|  | } | 
|  |  | 
|  | // atan(a + h) ~= atan(a) + 1 / (1 + a^2) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> atan(const Jet<T, N>& f) { | 
|  | const T tmp = T(1.0) / (T(1.0) + f.a * f.a); | 
|  | return Jet<T, N>(atan(f.a), tmp * f.v); | 
|  | } | 
|  |  | 
|  | // sinh(a + h) ~= sinh(a) + cosh(a) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> sinh(const Jet<T, N>& f) { | 
|  | return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v); | 
|  | } | 
|  |  | 
|  | // cosh(a + h) ~= cosh(a) + sinh(a) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> cosh(const Jet<T, N>& f) { | 
|  | return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v); | 
|  | } | 
|  |  | 
|  | // tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> tanh(const Jet<T, N>& f) { | 
|  | const T tanh_a = tanh(f.a); | 
|  | const T tmp = T(1.0) - tanh_a * tanh_a; | 
|  | return Jet<T, N>(tanh_a, tmp * f.v); | 
|  | } | 
|  |  | 
|  | // The floor function should be used with extreme care as this operation will | 
|  | // result in a zero derivative which provides no information to the solver. | 
|  | // | 
|  | // floor(a + h) ~= floor(a) + 0 | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> floor(const Jet<T, N>& f) { | 
|  | return Jet<T, N>(floor(f.a)); | 
|  | } | 
|  |  | 
|  | // The ceil function should be used with extreme care as this operation will | 
|  | // result in a zero derivative which provides no information to the solver. | 
|  | // | 
|  | // ceil(a + h) ~= ceil(a) + 0 | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> ceil(const Jet<T, N>& f) { | 
|  | return Jet<T, N>(ceil(f.a)); | 
|  | } | 
|  |  | 
|  | // Bessel functions of the first kind with integer order equal to 0, 1, n. | 
|  | // | 
|  | // Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of | 
|  | // _j[0,1,n]().  Where available on MSVC, use _j[0,1,n]() to avoid deprecated | 
|  | // function errors in client code (the specific warning is suppressed when | 
|  | // Ceres itself is built). | 
|  | inline double BesselJ0(double x) { | 
|  | #if defined(_MSC_VER) && defined(_j0) | 
|  | return _j0(x); | 
|  | #else | 
|  | return j0(x); | 
|  | #endif | 
|  | } | 
|  | inline double BesselJ1(double x) { | 
|  | #if defined(_MSC_VER) && defined(_j1) | 
|  | return _j1(x); | 
|  | #else | 
|  | return j1(x); | 
|  | #endif | 
|  | } | 
|  | inline double BesselJn(int n, double x) { | 
|  | #if defined(_MSC_VER) && defined(_jn) | 
|  | return _jn(n, x); | 
|  | #else | 
|  | return jn(n, x); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // For the formulae of the derivatives of the Bessel functions see the book: | 
|  | // Olver, Lozier, Boisvert, Clark, NIST Handbook of Mathematical Functions, | 
|  | // Cambridge University Press 2010. | 
|  | // | 
|  | // Formulae are also available at http://dlmf.nist.gov | 
|  |  | 
|  | // See formula http://dlmf.nist.gov/10.6#E3 | 
|  | // j0(a + h) ~= j0(a) - j1(a) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> BesselJ0(const Jet<T, N>& f) { | 
|  | return Jet<T, N>(BesselJ0(f.a), | 
|  | -BesselJ1(f.a) * f.v); | 
|  | } | 
|  |  | 
|  | // See formula http://dlmf.nist.gov/10.6#E1 | 
|  | // j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> BesselJ1(const Jet<T, N>& f) { | 
|  | return Jet<T, N>(BesselJ1(f.a), | 
|  | T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v); | 
|  | } | 
|  |  | 
|  | // See formula http://dlmf.nist.gov/10.6#E1 | 
|  | // j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> BesselJn(int n, const Jet<T, N>& f) { | 
|  | return Jet<T, N>(BesselJn(n, f.a), | 
|  | T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v); | 
|  | } | 
|  |  | 
|  | // Jet Classification. It is not clear what the appropriate semantics are for | 
|  | // these classifications. This picks that IsFinite and isnormal are "all" | 
|  | // operations, i.e. all elements of the jet must be finite for the jet itself | 
|  | // to be finite (or normal). For IsNaN and IsInfinite, the answer is less | 
|  | // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any | 
|  | // part of a jet is nan or inf, then the entire jet is nan or inf. This leads | 
|  | // to strange situations like a jet can be both IsInfinite and IsNaN, but in | 
|  | // practice the "any" semantics are the most useful for e.g. checking that | 
|  | // derivatives are sane. | 
|  |  | 
|  | // The jet is finite if all parts of the jet are finite. | 
|  | template <typename T, int N> inline | 
|  | bool IsFinite(const Jet<T, N>& f) { | 
|  | if (!IsFinite(f.a)) { | 
|  | return false; | 
|  | } | 
|  | for (int i = 0; i < N; ++i) { | 
|  | if (!IsFinite(f.v[i])) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The jet is infinite if any part of the jet is infinite. | 
|  | template <typename T, int N> inline | 
|  | bool IsInfinite(const Jet<T, N>& f) { | 
|  | if (IsInfinite(f.a)) { | 
|  | return true; | 
|  | } | 
|  | for (int i = 0; i < N; i++) { | 
|  | if (IsInfinite(f.v[i])) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The jet is NaN if any part of the jet is NaN. | 
|  | template <typename T, int N> inline | 
|  | bool IsNaN(const Jet<T, N>& f) { | 
|  | if (IsNaN(f.a)) { | 
|  | return true; | 
|  | } | 
|  | for (int i = 0; i < N; ++i) { | 
|  | if (IsNaN(f.v[i])) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The jet is normal if all parts of the jet are normal. | 
|  | template <typename T, int N> inline | 
|  | bool IsNormal(const Jet<T, N>& f) { | 
|  | if (!IsNormal(f.a)) { | 
|  | return false; | 
|  | } | 
|  | for (int i = 0; i < N; ++i) { | 
|  | if (!IsNormal(f.v[i])) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2) | 
|  | // | 
|  | // In words: the rate of change of theta is 1/r times the rate of | 
|  | // change of (x, y) in the positive angular direction. | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) { | 
|  | // Note order of arguments: | 
|  | // | 
|  | //   f = a + da | 
|  | //   g = b + db | 
|  |  | 
|  | T const tmp = T(1.0) / (f.a * f.a + g.a * g.a); | 
|  | return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // pow -- base is a differentiable function, exponent is a constant. | 
|  | // (a+da)^p ~= a^p + p*a^(p-1) da | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> pow(const Jet<T, N>& f, double g) { | 
|  | T const tmp = g * pow(f.a, g - T(1.0)); | 
|  | return Jet<T, N>(pow(f.a, g), tmp * f.v); | 
|  | } | 
|  |  | 
|  | // pow -- base is a constant, exponent is a differentiable function. | 
|  | // We have various special cases, see the comment for pow(Jet, Jet) for | 
|  | // analysis: | 
|  | // | 
|  | // 1. For f > 0 we have: (f)^(g + dg) ~= f^g + f^g log(f) dg | 
|  | // | 
|  | // 2. For f == 0 and g > 0 we have: (f)^(g + dg) ~= f^g | 
|  | // | 
|  | // 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg | 
|  | // != 0, the derivatives are not defined and we return NaN. | 
|  |  | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> pow(double f, const Jet<T, N>& g) { | 
|  | if (f == 0 && g.a > 0) { | 
|  | // Handle case 2. | 
|  | return Jet<T, N>(T(0.0)); | 
|  | } | 
|  | if (f < 0 && g.a == floor(g.a)) { | 
|  | // Handle case 3. | 
|  | Jet<T, N> ret(pow(f, g.a)); | 
|  | for (int i = 0; i < N; i++) { | 
|  | if (g.v[i] != T(0.0)) { | 
|  | // Return a NaN when g.v != 0. | 
|  | ret.v[i] = std::numeric_limits<T>::quiet_NaN(); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | // Handle case 1. | 
|  | T const tmp = pow(f, g.a); | 
|  | return Jet<T, N>(tmp, log(f) * tmp * g.v); | 
|  | } | 
|  |  | 
|  | // pow -- both base and exponent are differentiable functions. This has a | 
|  | // variety of special cases that require careful handling. | 
|  | // | 
|  | // 1. For f > 0: | 
|  | //    (f + df)^(g + dg) ~= f^g + f^(g - 1) * (g * df + f * log(f) * dg) | 
|  | //    The numerical evaluation of f * log(f) for f > 0 is well behaved, even for | 
|  | //    extremely small values (e.g. 1e-99). | 
|  | // | 
|  | // 2. For f == 0 and g > 1: (f + df)^(g + dg) ~= 0 | 
|  | //    This cases is needed because log(0) can not be evaluated in the f > 0 | 
|  | //    expression. However the function f*log(f) is well behaved around f == 0 | 
|  | //    and its limit as f-->0 is zero. | 
|  | // | 
|  | // 3. For f == 0 and g == 1: (f + df)^(g + dg) ~= 0 + df | 
|  | // | 
|  | // 4. For f == 0 and 0 < g < 1: The value is finite but the derivatives are not. | 
|  | // | 
|  | // 5. For f == 0 and g < 0: The value and derivatives of f^g are not finite. | 
|  | // | 
|  | // 6. For f == 0 and g == 0: The C standard incorrectly defines 0^0 to be 1 | 
|  | //    "because there are applications that can exploit this definition". We | 
|  | //    (arbitrarily) decree that derivatives here will be nonfinite, since that | 
|  | //    is consistent with the behavior for f == 0, g < 0 and 0 < g < 1. | 
|  | //    Practically any definition could have been justified because mathematical | 
|  | //    consistency has been lost at this point. | 
|  | // | 
|  | // 7. For f < 0, g integer, dg == 0: (f + df)^(g + dg) ~= f^g + g * f^(g - 1) df | 
|  | //    This is equivalent to the case where f is a differentiable function and g | 
|  | //    is a constant (to first order). | 
|  | // | 
|  | // 8. For f < 0, g integer, dg != 0: The value is finite but the derivatives are | 
|  | //    not, because any change in the value of g moves us away from the point | 
|  | //    with a real-valued answer into the region with complex-valued answers. | 
|  | // | 
|  | // 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite. | 
|  |  | 
|  | template <typename T, int N> inline | 
|  | Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) { | 
|  | if (f.a == 0 && g.a >= 1) { | 
|  | // Handle cases 2 and 3. | 
|  | if (g.a > 1) { | 
|  | return Jet<T, N>(T(0.0)); | 
|  | } | 
|  | return f; | 
|  | } | 
|  | if (f.a < 0 && g.a == floor(g.a)) { | 
|  | // Handle cases 7 and 8. | 
|  | T const tmp = g.a * pow(f.a, g.a - T(1.0)); | 
|  | Jet<T, N> ret(pow(f.a, g.a), tmp * f.v); | 
|  | for (int i = 0; i < N; i++) { | 
|  | if (g.v[i] != T(0.0)) { | 
|  | // Return a NaN when g.v != 0. | 
|  | ret.v[i] = std::numeric_limits<T>::quiet_NaN(); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | // Handle the remaining cases. For cases 4,5,6,9 we allow the log() function | 
|  | // to generate -HUGE_VAL or NaN, since those cases result in a nonfinite | 
|  | // derivative. | 
|  | T const tmp1 = pow(f.a, g.a); | 
|  | T const tmp2 = g.a * pow(f.a, g.a - T(1.0)); | 
|  | T const tmp3 = tmp1 * log(f.a); | 
|  | return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v); | 
|  | } | 
|  |  | 
|  | // Define the helper functions Eigen needs to embed Jet types. | 
|  | // | 
|  | // NOTE(keir): machine_epsilon() and precision() are missing, because they don't | 
|  | // work with nested template types (e.g. where the scalar is itself templated). | 
|  | // Among other things, this means that decompositions of Jet's does not work, | 
|  | // for example | 
|  | // | 
|  | //   Matrix<Jet<T, N> ... > A, x, b; | 
|  | //   ... | 
|  | //   A.solve(b, &x) | 
|  | // | 
|  | // does not work and will fail with a strange compiler error. | 
|  | // | 
|  | // TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we | 
|  | // switch to 3.0, also add the rest of the specialization functionality. | 
|  | template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x;              }  // NOLINT | 
|  | template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x;              }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_imag(const Jet<T, N>&  ) { return Jet<T, N>(0.0); }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_abs (const Jet<T, N>& x) { return fabs(x);        }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_abs2(const Jet<T, N>& x) { return x * x;          }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_sqrt(const Jet<T, N>& x) { return sqrt(x);        }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_exp (const Jet<T, N>& x) { return exp(x);         }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_log (const Jet<T, N>& x) { return log(x);         }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_sin (const Jet<T, N>& x) { return sin(x);         }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_cos (const Jet<T, N>& x) { return cos(x);         }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_tan (const Jet<T, N>& x) { return tan(x);         }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_atan(const Jet<T, N>& x) { return atan(x);        }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_sinh(const Jet<T, N>& x) { return sinh(x);        }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_cosh(const Jet<T, N>& x) { return cosh(x);        }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_tanh(const Jet<T, N>& x) { return tanh(x);        }  // NOLINT | 
|  | template<typename T, int N> inline       Jet<T, N>  ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); }  // NOLINT | 
|  |  | 
|  | // Note: This has to be in the ceres namespace for argument dependent lookup to | 
|  | // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with | 
|  | // strange compile errors. | 
|  | template <typename T, int N> | 
|  | inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) { | 
|  | s << "[" << z.a << " ; "; | 
|  | for (int i = 0; i < N; ++i) { | 
|  | s << z.v[i]; | 
|  | if (i != N - 1) { | 
|  | s << ", "; | 
|  | } | 
|  | } | 
|  | s << "]"; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | // Creating a specialization of NumTraits enables placing Jet objects inside | 
|  | // Eigen arrays, getting all the goodness of Eigen combined with autodiff. | 
|  | template<typename T, int N> | 
|  | struct NumTraits<ceres::Jet<T, N> > { | 
|  | typedef ceres::Jet<T, N> Real; | 
|  | typedef ceres::Jet<T, N> NonInteger; | 
|  | typedef ceres::Jet<T, N> Nested; | 
|  | typedef ceres::Jet<T, N> Literal; | 
|  |  | 
|  | static typename ceres::Jet<T, N> dummy_precision() { | 
|  | return ceres::Jet<T, N>(1e-12); | 
|  | } | 
|  |  | 
|  | static inline Real epsilon() { | 
|  | return Real(std::numeric_limits<T>::epsilon()); | 
|  | } | 
|  |  | 
|  | enum { | 
|  | IsComplex = 0, | 
|  | IsInteger = 0, | 
|  | IsSigned, | 
|  | ReadCost = 1, | 
|  | AddCost = 1, | 
|  | // For Jet types, multiplication is more expensive than addition. | 
|  | MulCost = 3, | 
|  | HasFloatingPoint = 1, | 
|  | RequireInitialization = 1 | 
|  | }; | 
|  |  | 
|  | template<bool Vectorized> | 
|  | struct Div { | 
|  | enum { | 
|  | #if defined(EIGEN_VECTORIZE_AVX) | 
|  | AVX = true, | 
|  | #else | 
|  | AVX = false, | 
|  | #endif | 
|  |  | 
|  | // Assuming that for Jets, division is as expensive as | 
|  | // multiplication. | 
|  | Cost = 3 | 
|  | }; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | }  // namespace Eigen | 
|  |  | 
|  | #endif  // CERES_PUBLIC_JET_H_ |