|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  |  | 
|  | #include "ceres/gradient_checking_cost_function.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstdint> | 
|  | #include <memory> | 
|  | #include <random> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/loss_function.h" | 
|  | #include "ceres/manifold.h" | 
|  | #include "ceres/parameter_block.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/residual_block.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gmock/gmock.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | using std::vector; | 
|  | using testing::_; | 
|  | using testing::AllOf; | 
|  | using testing::AnyNumber; | 
|  | using testing::HasSubstr; | 
|  |  | 
|  | // Pick a (non-quadratic) function whose derivative are easy: | 
|  | // | 
|  | //    f = exp(- a' x). | 
|  | //   df = - f a. | 
|  | // | 
|  | // where 'a' is a vector of the same size as 'x'. In the block | 
|  | // version, they are both block vectors, of course. | 
|  | template <int bad_block = 1, int bad_variable = 2> | 
|  | class TestTerm : public CostFunction { | 
|  | public: | 
|  | // The constructor of this function needs to know the number | 
|  | // of blocks desired, and the size of each block. | 
|  | template <class UniformRandomFunctor> | 
|  | TestTerm(int arity, int const* dim, UniformRandomFunctor&& randu) | 
|  | : arity_(arity) { | 
|  | // Make 'arity' random vectors. | 
|  | a_.resize(arity_); | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | a_[j].resize(dim[j]); | 
|  | for (int u = 0; u < dim[j]; ++u) { | 
|  | a_[j][u] = randu(); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < arity_; i++) { | 
|  | mutable_parameter_block_sizes()->push_back(dim[i]); | 
|  | } | 
|  | set_num_residuals(1); | 
|  | } | 
|  |  | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const override { | 
|  | // Compute a . x. | 
|  | double ax = 0; | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
|  | ax += a_[j][u] * parameters[j][u]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is the cost, but also appears as a factor | 
|  | // in the derivatives. | 
|  | double f = *residuals = exp(-ax); | 
|  |  | 
|  | // Accumulate 1st order derivatives. | 
|  | if (jacobians) { | 
|  | for (int j = 0; j < arity_; ++j) { | 
|  | if (jacobians[j]) { | 
|  | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
|  | // See comments before class. | 
|  | jacobians[j][u] = -f * a_[j][u]; | 
|  |  | 
|  | if (bad_block == j && bad_variable == u) { | 
|  | // Whoopsiedoopsie! Deliberately introduce a faulty jacobian entry | 
|  | // like what happens when users make an error in their jacobian | 
|  | // computations. This should get detected. | 
|  | LOG(INFO) << "Poisoning jacobian for parameter block " << j | 
|  | << ", row 0, column " << u; | 
|  | jacobians[j][u] += 500; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | int arity_; | 
|  | vector<vector<double>> a_; | 
|  | }; | 
|  |  | 
|  | TEST(GradientCheckingCostFunction, ResidualsAndJacobiansArePreservedTest) { | 
|  | // Test with 3 blocks of size 2, 3 and 4. | 
|  | int const arity = 3; | 
|  | int const dim[arity] = {2, 3, 4}; | 
|  |  | 
|  | // Make a random set of blocks. | 
|  | vector<double*> parameters(arity); | 
|  | std::mt19937 prng; | 
|  | std::uniform_real_distribution<double> distribution(-1.0, 1.0); | 
|  | auto randu = [&prng, &distribution] { return distribution(prng); }; | 
|  | for (int j = 0; j < arity; ++j) { | 
|  | parameters[j] = new double[dim[j]]; | 
|  | for (int u = 0; u < dim[j]; ++u) { | 
|  | parameters[j][u] = randu(); | 
|  | } | 
|  | } | 
|  |  | 
|  | double original_residual; | 
|  | double residual; | 
|  | vector<double*> original_jacobians(arity); | 
|  | vector<double*> jacobians(arity); | 
|  |  | 
|  | for (int j = 0; j < arity; ++j) { | 
|  | // Since residual is one dimensional the jacobians have the same | 
|  | // size as the parameter blocks. | 
|  | jacobians[j] = new double[dim[j]]; | 
|  | original_jacobians[j] = new double[dim[j]]; | 
|  | } | 
|  |  | 
|  | const double kRelativeStepSize = 1e-6; | 
|  | const double kRelativePrecision = 1e-4; | 
|  |  | 
|  | TestTerm<-1, -1> term(arity, dim, randu); | 
|  | GradientCheckingIterationCallback callback; | 
|  | auto gradient_checking_cost_function = | 
|  | CreateGradientCheckingCostFunction(&term, | 
|  | nullptr, | 
|  | kRelativeStepSize, | 
|  | kRelativePrecision, | 
|  | "Ignored.", | 
|  | &callback); | 
|  | term.Evaluate(¶meters[0], &original_residual, &original_jacobians[0]); | 
|  |  | 
|  | gradient_checking_cost_function->Evaluate( | 
|  | ¶meters[0], &residual, &jacobians[0]); | 
|  | EXPECT_EQ(original_residual, residual); | 
|  |  | 
|  | for (int j = 0; j < arity; j++) { | 
|  | for (int k = 0; k < dim[j]; ++k) { | 
|  | EXPECT_EQ(original_jacobians[j][k], jacobians[j][k]); | 
|  | } | 
|  |  | 
|  | delete[] parameters[j]; | 
|  | delete[] jacobians[j]; | 
|  | delete[] original_jacobians[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(GradientCheckingCostFunction, SmokeTest) { | 
|  | // Test with 3 blocks of size 2, 3 and 4. | 
|  | int const arity = 3; | 
|  | int const dim[arity] = {2, 3, 4}; | 
|  |  | 
|  | // Make a random set of blocks. | 
|  | vector<double*> parameters(arity); | 
|  | std::mt19937 prng; | 
|  | std::uniform_real_distribution<double> distribution(-1.0, 1.0); | 
|  | auto randu = [&prng, &distribution] { return distribution(prng); }; | 
|  | for (int j = 0; j < arity; ++j) { | 
|  | parameters[j] = new double[dim[j]]; | 
|  | for (int u = 0; u < dim[j]; ++u) { | 
|  | parameters[j][u] = randu(); | 
|  | } | 
|  | } | 
|  |  | 
|  | double residual; | 
|  | vector<double*> jacobians(arity); | 
|  | for (int j = 0; j < arity; ++j) { | 
|  | // Since residual is one dimensional the jacobians have the same size as the | 
|  | // parameter blocks. | 
|  | jacobians[j] = new double[dim[j]]; | 
|  | } | 
|  |  | 
|  | const double kRelativeStepSize = 1e-6; | 
|  | const double kRelativePrecision = 1e-4; | 
|  |  | 
|  | // Should have one term that's bad, causing everything to get dumped. | 
|  | LOG(INFO) << "Bad gradient"; | 
|  | { | 
|  | TestTerm<1, 2> term(arity, dim, randu); | 
|  | GradientCheckingIterationCallback callback; | 
|  | auto gradient_checking_cost_function = | 
|  | CreateGradientCheckingCostFunction(&term, | 
|  | nullptr, | 
|  | kRelativeStepSize, | 
|  | kRelativePrecision, | 
|  | "Fuzzy banana", | 
|  | &callback); | 
|  | EXPECT_TRUE(gradient_checking_cost_function->Evaluate( | 
|  | ¶meters[0], &residual, &jacobians[0])); | 
|  | EXPECT_TRUE(callback.gradient_error_detected()); | 
|  | EXPECT_TRUE(callback.error_log().find("Fuzzy banana") != std::string::npos); | 
|  | EXPECT_TRUE(callback.error_log().find( | 
|  | "(1,0,2) Relative error worse than") != std::string::npos); | 
|  | } | 
|  |  | 
|  | // The gradient is correct, so no errors are reported. | 
|  | LOG(INFO) << "Good gradient"; | 
|  | { | 
|  | TestTerm<-1, -1> term(arity, dim, randu); | 
|  | GradientCheckingIterationCallback callback; | 
|  | auto gradient_checking_cost_function = | 
|  | CreateGradientCheckingCostFunction(&term, | 
|  | nullptr, | 
|  | kRelativeStepSize, | 
|  | kRelativePrecision, | 
|  | "Fuzzy banana", | 
|  | &callback); | 
|  | EXPECT_TRUE(gradient_checking_cost_function->Evaluate( | 
|  | ¶meters[0], &residual, &jacobians[0])); | 
|  | EXPECT_FALSE(callback.gradient_error_detected()); | 
|  | } | 
|  |  | 
|  | for (int j = 0; j < arity; j++) { | 
|  | delete[] parameters[j]; | 
|  | delete[] jacobians[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The following three classes are for the purposes of defining | 
|  | // function signatures. They have dummy Evaluate functions. | 
|  |  | 
|  | // Trivial cost function that accepts a single argument. | 
|  | class UnaryCostFunction : public CostFunction { | 
|  | public: | 
|  | UnaryCostFunction(int num_residuals, int32_t parameter_block_size) { | 
|  | set_num_residuals(num_residuals); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block_size); | 
|  | } | 
|  |  | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const final { | 
|  | for (int i = 0; i < num_residuals(); ++i) { | 
|  | residuals[i] = 1; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Trivial cost function that accepts two arguments. | 
|  | class BinaryCostFunction : public CostFunction { | 
|  | public: | 
|  | BinaryCostFunction(int num_residuals, | 
|  | int32_t parameter_block1_size, | 
|  | int32_t parameter_block2_size) { | 
|  | set_num_residuals(num_residuals); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block1_size); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block2_size); | 
|  | } | 
|  |  | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const final { | 
|  | for (int i = 0; i < num_residuals(); ++i) { | 
|  | residuals[i] = 2; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Trivial cost function that accepts three arguments. | 
|  | class TernaryCostFunction : public CostFunction { | 
|  | public: | 
|  | TernaryCostFunction(int num_residuals, | 
|  | int32_t parameter_block1_size, | 
|  | int32_t parameter_block2_size, | 
|  | int32_t parameter_block3_size) { | 
|  | set_num_residuals(num_residuals); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block1_size); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block2_size); | 
|  | mutable_parameter_block_sizes()->push_back(parameter_block3_size); | 
|  | } | 
|  |  | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const final { | 
|  | for (int i = 0; i < num_residuals(); ++i) { | 
|  | residuals[i] = 3; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Verify that the two ParameterBlocks are formed from the same user | 
|  | // array and have the same Manifold objects. | 
|  | static void ParameterBlocksAreEquivalent(const ParameterBlock* left, | 
|  | const ParameterBlock* right) { | 
|  | CHECK(left != nullptr); | 
|  | CHECK(right != nullptr); | 
|  | EXPECT_EQ(left->user_state(), right->user_state()); | 
|  | EXPECT_EQ(left->Size(), right->Size()); | 
|  | EXPECT_EQ(left->Size(), right->Size()); | 
|  | EXPECT_EQ(left->TangentSize(), right->TangentSize()); | 
|  | EXPECT_EQ(left->manifold(), right->manifold()); | 
|  | EXPECT_EQ(left->IsConstant(), right->IsConstant()); | 
|  | } | 
|  |  | 
|  | TEST(GradientCheckingProblemImpl, ProblemDimensionsMatch) { | 
|  | // Parameter blocks with arbitrarily chosen initial values. | 
|  | double x[] = {1.0, 2.0, 3.0}; | 
|  | double y[] = {4.0, 5.0, 6.0, 7.0}; | 
|  | double z[] = {8.0, 9.0, 10.0, 11.0, 12.0}; | 
|  | double w[] = {13.0, 14.0, 15.0, 16.0}; | 
|  |  | 
|  | ProblemImpl problem_impl; | 
|  | problem_impl.AddParameterBlock(x, 3); | 
|  | problem_impl.AddParameterBlock(y, 4); | 
|  | problem_impl.SetParameterBlockConstant(y); | 
|  | problem_impl.AddParameterBlock(z, 5); | 
|  | problem_impl.AddParameterBlock(w, 4, new QuaternionManifold); | 
|  | // clang-format off | 
|  | problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), | 
|  | nullptr, x); | 
|  | problem_impl.AddResidualBlock(new BinaryCostFunction(6, 5, 4), | 
|  | nullptr, z, y); | 
|  | problem_impl.AddResidualBlock(new BinaryCostFunction(3, 3, 5), | 
|  | new TrivialLoss, x, z); | 
|  | problem_impl.AddResidualBlock(new BinaryCostFunction(7, 5, 3), | 
|  | nullptr, z, x); | 
|  | problem_impl.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4), | 
|  | nullptr, z, x, y); | 
|  | // clang-format on | 
|  |  | 
|  | GradientCheckingIterationCallback callback; | 
|  | auto gradient_checking_problem_impl = | 
|  | CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0, &callback); | 
|  |  | 
|  | // The dimensions of the two problems match. | 
|  | EXPECT_EQ(problem_impl.NumParameterBlocks(), | 
|  | gradient_checking_problem_impl->NumParameterBlocks()); | 
|  | EXPECT_EQ(problem_impl.NumResidualBlocks(), | 
|  | gradient_checking_problem_impl->NumResidualBlocks()); | 
|  |  | 
|  | EXPECT_EQ(problem_impl.NumParameters(), | 
|  | gradient_checking_problem_impl->NumParameters()); | 
|  | EXPECT_EQ(problem_impl.NumResiduals(), | 
|  | gradient_checking_problem_impl->NumResiduals()); | 
|  |  | 
|  | const Program& program = problem_impl.program(); | 
|  | const Program& gradient_checking_program = | 
|  | gradient_checking_problem_impl->program(); | 
|  |  | 
|  | // Since we added the ParameterBlocks and ResidualBlocks explicitly, | 
|  | // they should be in the same order in the two programs. It is | 
|  | // possible that may change due to implementation changes to | 
|  | // Program. This is not expected to be the case and writing code to | 
|  | // anticipate that possibility not worth the extra complexity in | 
|  | // this test. | 
|  | for (int i = 0; i < program.parameter_blocks().size(); ++i) { | 
|  | ParameterBlocksAreEquivalent( | 
|  | program.parameter_blocks()[i], | 
|  | gradient_checking_program.parameter_blocks()[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < program.residual_blocks().size(); ++i) { | 
|  | // Compare the sizes of the two ResidualBlocks. | 
|  | const ResidualBlock* original_residual_block = program.residual_blocks()[i]; | 
|  | const ResidualBlock* new_residual_block = | 
|  | gradient_checking_program.residual_blocks()[i]; | 
|  | EXPECT_EQ(original_residual_block->NumParameterBlocks(), | 
|  | new_residual_block->NumParameterBlocks()); | 
|  | EXPECT_EQ(original_residual_block->NumResiduals(), | 
|  | new_residual_block->NumResiduals()); | 
|  | EXPECT_EQ(original_residual_block->NumScratchDoublesForEvaluate(), | 
|  | new_residual_block->NumScratchDoublesForEvaluate()); | 
|  |  | 
|  | // Verify that the ParameterBlocks for the two residuals are equivalent. | 
|  | for (int j = 0; j < original_residual_block->NumParameterBlocks(); ++j) { | 
|  | ParameterBlocksAreEquivalent( | 
|  | original_residual_block->parameter_blocks()[j], | 
|  | new_residual_block->parameter_blocks()[j]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(GradientCheckingProblemImpl, ConstrainedProblemBoundsArePropagated) { | 
|  | // Parameter blocks with arbitrarily chosen initial values. | 
|  | double x[] = {1.0, 2.0, 3.0}; | 
|  | ProblemImpl problem_impl; | 
|  | problem_impl.AddParameterBlock(x, 3); | 
|  | problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), nullptr, x); | 
|  | problem_impl.SetParameterLowerBound(x, 0, 0.9); | 
|  | problem_impl.SetParameterUpperBound(x, 1, 2.5); | 
|  |  | 
|  | GradientCheckingIterationCallback callback; | 
|  | auto gradient_checking_problem_impl = | 
|  | CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0, &callback); | 
|  |  | 
|  | // The dimensions of the two problems match. | 
|  | EXPECT_EQ(problem_impl.NumParameterBlocks(), | 
|  | gradient_checking_problem_impl->NumParameterBlocks()); | 
|  | EXPECT_EQ(problem_impl.NumResidualBlocks(), | 
|  | gradient_checking_problem_impl->NumResidualBlocks()); | 
|  |  | 
|  | EXPECT_EQ(problem_impl.NumParameters(), | 
|  | gradient_checking_problem_impl->NumParameters()); | 
|  | EXPECT_EQ(problem_impl.NumResiduals(), | 
|  | gradient_checking_problem_impl->NumResiduals()); | 
|  |  | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | EXPECT_EQ(problem_impl.GetParameterLowerBound(x, i), | 
|  | gradient_checking_problem_impl->GetParameterLowerBound(x, i)); | 
|  | EXPECT_EQ(problem_impl.GetParameterUpperBound(x, i), | 
|  | gradient_checking_problem_impl->GetParameterUpperBound(x, i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |